Members of families with mutations in the tau gene are known to be heterogeneous in their clinical presentation, ranging from frontotemporal dementia to a clinical picture more resembling corticobasal degeneration or progressive supranuclear palsy. In this report, we describe a new phenotype for the tau S305S mutation, previously described as progressive supranuclear palsy. Clinically, the three affected family members showed alterations in personality and behaviour as well as cognitive decline and late levodopa-resistant parkinsonian symptoms, consistent with the diagnosis of frontotemporal dementia with parkinsonism linked to chromosome 17. One autopsied case displayed degeneration of the frontal and temporal lobes together with extensive tau pathology in both neurones and glial cells. Sarkosyl-soluble and -insoluble tau extracted from frontal cortex revealed a ratio shift with decreased levels of tau with three microtubule-binding repeats and increased levels of tau with four microtubule-binding repeats (4R tau). These findings provide further evidence for the clinical and pathological variation both within and between families with mutations in the tau gene. In addition, they support previous studies which demonstrate that the S305S mutation influences the splicing of tau exon 10 and results in an overproduction of 4R tau.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1468-1331.2007.02017.x | DOI Listing |
Cell Rep
December 2024
Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Due to the importance of 4R tau (with four microtubule-binding-repeat domains) in the pathogenicity of primary tauopathies, it has been challenging to model these diseases in induced pluripotent stem cell (iPSC)-derived neurons, which express very low levels of 4R tau. To address this, we have developed a panel of isogenic iPSC lines carrying MAPT splice-site mutations, S305S, S305I, or S305N, derived from four different donors. All mutations significantly increase 4R tau expression in iPSC neurons and astrocytes.
View Article and Find Full Text PDFbioRxiv
June 2023
Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
Due to the importance of 4R tau in the pathogenicity of primary tauopathies, it has been challenging to model these diseases in iPSC-derived neurons, which express very low levels of 4R tau. To address this problem we have developed a panel of isogenic iPSC lines carrying the splice-site mutations S305S, S305I or S305N, derived from four different donors. All three mutations significantly increased the proportion of 4R tau expression in iPSC-neurons and astrocytes, with up to 80% 4R transcripts in S305N neurons from as early as 4 weeks of differentiation.
View Article and Find Full Text PDFBrain
February 2018
Brain and Mind Centre and Central Clinical School, Sydney Medical School, University of Sydney, Australia.
See Josephs (doi:10.1093/brain/awx367) for a scientific commentary on this article.In many neurodegenerative disorders, familial forms have provided important insights into the pathogenesis of their corresponding sporadic forms.
View Article and Find Full Text PDFActa Neuropathol
February 2014
Department of Neurobiology, Care Sciences and Society, Karolinska Institutet Alzheimer Disease Research Center (KI-ADRC), Karolinska Institutet, Novum level 5, Huddinge, 141 86, Stockholm, Sweden,
Eur J Neurol
February 2008
Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden.
Members of families with mutations in the tau gene are known to be heterogeneous in their clinical presentation, ranging from frontotemporal dementia to a clinical picture more resembling corticobasal degeneration or progressive supranuclear palsy. In this report, we describe a new phenotype for the tau S305S mutation, previously described as progressive supranuclear palsy. Clinically, the three affected family members showed alterations in personality and behaviour as well as cognitive decline and late levodopa-resistant parkinsonian symptoms, consistent with the diagnosis of frontotemporal dementia with parkinsonism linked to chromosome 17.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!