In order to explain the denaturation and melting in replication and transcription of deoxyribonucleic acid (DNA) at physiological temperature, we propose a dynamical model on the basis of structure and motion of DNA under the actions of energy released in hydrolysis of adenosine triphosphate (ATP) and enzymes. The model admits three degrees of freedom per base pair: two displacement variables associated with the vibrations of hydrogen atom in the hydrogen bonds and base (nucleotide), respectively, and an angular variable describing the rotation of base. The important role of hydrogen atom in the hydrogen bonds is stressed in this model. The Hamiltonian of the intact double helix system is given first, subsequently the equations of motion and solutions of a melting system are developed. The solutions represent the excited states formed by the displacements of hydrogen atoms and bases and the rotations of bases, arising from the energy absorbed by DNA, respectively. The results obtained show that the displacements of hydrogen atoms increase with time and along the helix. Once the displacements of hydrogen atoms and rotations of bases reach to certain limits, the hydrogen bonds are disrupted, and the two double helical strands of DNA are separated, a melting state in the replication or transcription process occurs. The properties of thermal motion of hydrogen atoms in this state at physiological temperature is further studied by using a transfer integral method and the thermodynamic properties such as free energy and entropy of the thermally excited state are obtained in the process. Values of characteristic parameters and critical temperature of melting in transcription process are derived. Finally the validity of the theory was demonstrated through comparison between experimental and theoretical data of specific heat and force of phase transition. This investigation is helpful to understand mechanism and essence of the replication or transcription process and promote quantitative description of these processes.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2008.10507192DOI Listing

Publication Analysis

Top Keywords

replication transcription
16
hydrogen atoms
16
hydrogen bonds
12
displacements hydrogen
12
transcription process
12
hydrogen
9
deoxyribonucleic acid
8
physiological temperature
8
hydrogen atom
8
atom hydrogen
8

Similar Publications

Background: Hypomethylating agents (HMA), such as azacytidine (AZA) and decitabine (DAC), are epigenetic therapies used to treat some patients with acute myeloid leukaemia (AML) and myelodysplastic syndrome. HMAs act in a replication-dependent manner to remove DNA methylation from the genome. However, AML cells targeted by HMA therapy are often quiescent within the bone marrow, where oxygen levels are low.

View Article and Find Full Text PDF

Dynamic histone modification patterns coordinating DNA processes.

Mol Cell

January 2025

Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092 Seville, Spain; Departamento de Genética, Universidad de Sevilla, 41012 Seville, Spain. Electronic address:

Significant effort has been spent attempting to unravel the causal relationship between histone post-translational modifications and fundamental DNA processes, including transcription, replication, and repair. However, less attention has been paid to understanding the reciprocal influence-that is, how DNA processes, in turn, shape the distribution and patterns of histone modifications and how these changes convey information, both temporally and spatially, from one process to another. Here, we review how histone modifications underpin the widespread bidirectional crosstalk between different DNA processes, which allow seemingly distinct phenomena to operate as a unified whole.

View Article and Find Full Text PDF

Viruses engage in a variety of processes to subvert host defenses and create an environment amenable to replication. Here, using rotavirus as a prototype, we show that calcium conductance out of the endoplasmic reticulum by the virus encoded ion channel, , induces intercellular calcium waves that extend beyond the infected cell and contribute to pathogenesis. Viruses that lack the ability to induce this signaling show diminished viral shedding and attenuated disease in a mouse model of rotavirus diarrhea.

View Article and Find Full Text PDF

Polycystic kidney diseases (PKD) are genetic disorders which disrupt kidney architecture and function. Autosomal recessive PKD (ARPKD) is a rare form of PKD, caused by mutations in PKHD1, and clinically more severe than the more common autosomal dominant PKD (ADPKD). Prior studies have implicated Hedgehog (Hh) signaling in ADPKD, with increased levels of Hh components in experimental ADPKD and reduced cystogenesis following pharmacological Hh inhibition.

View Article and Find Full Text PDF

BEND6 promotes RNA viruses' replication by inhibiting innate immune responses.

Sci China Life Sci

January 2025

National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.

Innate immunity serves as a crucial defense mechanism against invading pathogens, yet its negative regulatory network remains under explored. In this study, we identify BEN domain-containing protein 6 (BEND6) as a novel negative regulator of innate immunity through a genome-scale CRISPR knockout screen for host factors essential for viral replication. We show that BEND6 exhibits characteristics of an interferon-stimulated gene (ISG), with its mRNA and protein levels upregulated by RNA virus-induced IFN-β.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!