Discovery and mechanistic study of Al(III)-catalyzed transamidation of tertiary amides.

J Am Chem Soc

Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA.

Published: January 2008

Cleavage of the C-N bond of carboxamides generally requires harsh conditions. This study reveals that tris(amido)Al(III) catalysts, such as Al2(NMe2)6, promote facile equilibrium-controlled transamidation of tertiary carboxamides with secondary amines. The mechanism of these reactions was investigated by kinetic, spectroscopic, and density functional theory (DFT) computational methods. The catalyst resting state consists of an equilibrium mixture of a tris(amido)Al(III) dimer and a monomeric tris(amido)Al(III)-carboxamide adduct, and the turnover-limiting step involves intramolecular nucleophilic attack of an amido ligand on the coordinated carboxamide or subsequent rearrangement (intramolecular ligand substitution) of the tetrahedral intermediate. Fundamental mechanistic differences between these tertiary transamidation reactions and previously characterized transamidations involving secondary amides and primary amines suggest that tertiary amide/secondary amine systems are particularly promising for future development of metal-catalyzed amide metathesis reactions that proceed via transamidation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0762994DOI Listing

Publication Analysis

Top Keywords

transamidation tertiary
8
discovery mechanistic
4
mechanistic study
4
study aliii-catalyzed
4
transamidation
4
aliii-catalyzed transamidation
4
tertiary
4
tertiary amides
4
amides cleavage
4
cleavage c-n
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!