Optimizing sampling of tomato fruit for carotenoid content with application to assessing the impact of ripening disorders.

J Agric Food Chem

Department of Horticulture and Crop Science, OARDC, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA.

Published: January 2008

Color defines one aspect of quality for tomato and tomato products. Carotenoid pigments are responsible for the red and orange colors of tomato fruit, and thus color is also of dietary interest. The aims of this study were (1) to determine the relative importance of field sampling and analytical replication when measuring lycopene and beta-carotene in tomato fruit and (2) to determine the effect of yellow shoulder disorder (YSD) on the content of lycopene and beta-carotene in tomato juice and tissue. Our results show that increasing biological replications is an efficient strategy for reducing the experimental error associated with measurements of lycopene and beta-carotene. Analytical replications did not contribute significantly to observed variation, and therefore experimental efficiency will be gained by reducing analytical replications while increasing field replication. We found that YSD significantly reduces lycopene in affected tissue and in juice made from affected fruit. In contrast, beta-carotene concentrations were only reduced in affected tissue but were not significantly reduced in juice. With increasing interest in biofortified crops, modulating the carotenoid profile in tomato by minimizing YSD symptoms represents a strategy for improving tomato fruit quality that is currently supported by grower contract structure and processor grades.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf071896vDOI Listing

Publication Analysis

Top Keywords

tomato fruit
16
lycopene beta-carotene
12
tomato
8
beta-carotene tomato
8
analytical replications
8
fruit
5
optimizing sampling
4
sampling tomato
4
fruit carotenoid
4
carotenoid content
4

Similar Publications

Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).

View Article and Find Full Text PDF

This research investigates potential mechanisms of novel magnetic field (MF) treatments in inhibiting cell-wall-degrading enzymes, aiming to reduce weight loss and preserve the post-harvest quality of tomatoes ( L.) as a climacteric fruit. The optimization of the processing parameters, including MF intensity (1, 2, 3 mT), frequency (0, 50, 100 Hz), and duration (10, 20, 30 min), was accomplished by applying an orthogonal array design.

View Article and Find Full Text PDF

Carvacrol, a natural plant compound with antibacterial, antioxidant, and various biological activities, serves as the basis for developing a micro-emulsion fruit and vegetable cleaner. The study found that carvacrol demonstrated a minimum inhibitory concentration (MIC) ranging between 0.25 and 0.

View Article and Find Full Text PDF

CRISPR/cas9 Allows for the Quick Improvement of Tomato Firmness Breeding.

Curr Issues Mol Biol

December 2024

Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.

Fruit firmness is crucial for storability, making cultivating varieties with higher firmness a key target in tomato breeding. In recent years, tomato varieties primarily rely on hybridizing ripening mutants to produce F hybrids to enhance firmness. However, the undesirable traits introduced by these mutants often lead to a decline in the quality of the varieties.

View Article and Find Full Text PDF

26S Proteasome Subunit SlPBB2 Regulates Fruit Development and Ripening in Tomato.

J Agric Food Chem

January 2025

Fruit Biology Laboratory, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.

Proteasomes are protein complexes responsible for degrading unneeded or damaged proteins through proteolysis and play critical roles in regulating plant development and response to environmental stresses. However, it is still unclear whether proteasomes regulate fruit development and ripening. In this study, we investigated the function of a core proteasome subunit, SlPBB2, in tomato fruit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!