Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The pulse-wave velocity (PWV) has been used as an indicator of vascular stiffness, which can be an early predictor of cardiovascular mortality. A noninvasive, easily applicable method for detecting the regional pulse wave (PW) may contribute as a future modality for risk assessment. The purpose of this study was to demonstrate the feasibility and reproducibility of PW imaging (PWI) during propagation along the abdominal aortic wall by acquiring electrocardiography-gated (ECG-gated) radiofrequency (rf) signals noninvasively. An abdominal aortic aneurysm (AAA) was induced using a CaCl2 model in order to investigate the utility of this novel method for detecting disease. The abdominal aortas of twelve normal and five CaCl2 mice were scanned at 30 MHz and electrocardiography (ECG) was acquired simultaneously. The radial wall velocities were mapped with 8000 frames/s. Propagation of the PW was demonstrated in a color-coded ciné-loop format all cases. In the normal mice, the wave propagated in linear fashion from a proximal to a distal region. However, in CaCl2 mice, multiple waves were initiated from several regions (i.e., most likely initiated from various calcified regions within the aortic wall). The regional PWV in normal aortas was 2.70 +/- 0.54 m/s (r2 = 0.85 +/- 0.06, n = 12), which was in agreement with previous reports using conventional techniques. Although there was no statistical difference in the regional PWV between the normal and CaCl2-treated aortas (2.95 +/- 0.90 m/s (r2 = 0.51 +/- 0.22, n = 5)), the correlation coefficient was found to be significantly lower in the CaCl2-treated aortas (p < 0.01). This state-of-the-art technique allows noninvasive mapping of vascular disease in vivo. In future clinical applications, it may contribute to the detection of early stages of cardiovascular disease, which may decrease mortality among high-risk patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/016173460702900301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!