We verify experimentally, over a dynamic range of 55 dB in the probability distribution, that the amplified spontaneous emission noise of the 0's from an optically preamplified receiver is degenerate Bose-Einstein distributed. Using the noise parameters extracted from the experiment, we are able to predict the sensitivity of a 10-Gbit/s direct-detection receiver.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.23.001832DOI Listing

Publication Analysis

Top Keywords

amplified spontaneous
8
spontaneous emission
8
emission noise
8
optically preamplified
8
direct-detection receiver
8
photon statistics
4
statistics amplified
4
noise 10-gbit/s
4
10-gbit/s optically
4
preamplified direct-detection
4

Similar Publications

Exposure to loud and/or prolonged noise damages cochlear hair cells and triggers downstream changes in synaptic and electrical activity in multiple brain regions, resulting in hearing loss and altered speech comprehension. It remains unclear however whether or not noise exposure also compromises the cochlear efferent system, a feedback pathway in the brain that fine-tunes hearing sensitivity in the cochlea. We examined the effects of noise-induced hearing loss on the spontaneous action potential (AP) firing pattern in mouse lateral olivocochlear (LOC) neurons.

View Article and Find Full Text PDF

Preterm birth (PTB) refers to the delivery of a baby before the completion of 37 weeks of gestation. It is a significant global health issue with implications for both mothers and neonates. The placenta is a transient organ crucial in the sustenance of pregnancy until parturition; its dysfunction is associated with different adverse pregnancy outcomes, including PTB.

View Article and Find Full Text PDF

In clinics, physical injuries to the spinal cord cause a temporary motor areflexia below lesion, known as spinal shock. This topic is still underexplored due to the lack of preclinical spinal cord injury (SCI) models that do not use anesthesia, which would affect spinal excitability. Our innovative design considered a custom-made micro impactor that provides localized and calibrated strikes to the ventral surface of the thoracic spinal cord of the entire CNS isolated from neonatal rats.

View Article and Find Full Text PDF

Hypoxia triggers blood-brain barrier disruption and a strong microglial activation response around leaky cerebral blood vessels. These events are greatly amplified in aged mice which is translationally relevant because aged patients are far more likely to suffer hypoxic events from heart or lung disease, and because of the pathogenic role of blood-brain barrier breakdown in vascular dementia. Importantly, it is currently unclear if disrupted cerebral blood vessels spontaneously repair and if they do, whether surrounding microglia deactivates.

View Article and Find Full Text PDF

Tunable Picoliter-Scale Dropicle Formation Using Amphiphilic Microparticles with Patterned Hydrophilic Patches.

Adv Sci (Weinh)

December 2024

Control and Manipulation of Microscale Living Objects, Center for Translational Cancer Research (TranslaTUM), Munich Institute of Biomedical Engineering (MIBE), Department of Electrical Engineering, School of Computation, Information and Technology (CIT), Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany.

Microparticle-templated droplets or dropicles have recently gained interest in the fields of diagnostic immunoassays, single-cell analysis, and digital molecular biology. Amphiphilic particles have been shown to spontaneously capture aqueous droplets within their cavities upon mixing with an immiscible oil phase, where each particle templates a single droplet. Here, an amphiphilic microparticle with four discrete hydrophilic patches embedded at the inner corners of a square-shaped hydrophobic outer ring of the particle (4C particle) is fabricated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!