We fabricated a novel quasi-phase-matched frequency converter, using a zigzag optical beam path in a thin, polished parallel plate. Second-harmonic generation experiments demonstrated angle-tuned output at 4.6 to 5.3mum in GaAs and 1.7 to 2.0mum in ZnSe crystals when pulsed infrared laser sources were used.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.23.000661DOI Listing

Publication Analysis

Top Keywords

second-harmonic generation
8
quasi-phase-matched second-harmonic
4
generation total-internal-reflection
4
total-internal-reflection phase
4
phase shift
4
shift gallium
4
gallium arsenide
4
arsenide zinc
4
zinc selenide
4
selenide plates
4

Similar Publications

AgGaS and Derivatives: Design, Synthesis, and Optical Properties.

Nanomaterials (Basel)

January 2025

College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

Silver gallium sulfide (AgGaS) is a ternary ABX-type semiconductor featuring a direct bandgap and high chemical stability. Structurally resembling diamond, AgGaS has gained considerable attention as a highly promising material for nonlinear optical applications such as second harmonic generation and optical parametric oscillation. In attempts to expand the research scope, on the one hand, AgGaS-derived bulk materials with similar diamond-like configurations have been investigated for the enhancement of nonlinear optics performance, especially the improvement of laser-induced damage thresholds and/or nonlinear coefficients; on the other hand, nanoscale AgGaS and its derivatives have been synthesized with sizes as low as the exciton Bohr radius for the realization of potential applications in the fields of optoelectronics and lighting.

View Article and Find Full Text PDF

Acentric crystalline materials are the cornerstone of numerous cutting-edge technologies and have been highly sought-after, but they are difficult to construct controllably. Herein, by introducing a new p-block element to break the symmetrical environment of the d transition metal in the centric matrix TiTeO, a novel acentric tellurite sulfate, namely Ti(TeO)(SO), was successfully constructed. In its structure, two types of p-block element-centered oxo-anionic groups, [TeO] and [SO], endow [TiO] with an out-of-center distortion along the local C[111] direction, which is rare in titanium oxides containing a lone-pair cation.

View Article and Find Full Text PDF

Traditional tetrahedral-based mid-to-far infrared (MFIR) nonlinear optical (NLO) crystals often face limitations due to the optical anisotropy constraints imposed by their highly symmetric structures. In contrast, the relatively rare trigonal pyramidal [TeS] functional unit characterized by its asymmetric structure and stereochemically active lone pair (SCALP), offers improved optical anisotropy, hyperpolarizability and a broader IR transparency range. Despite its potential, synthetic challenges have hindered the development of MFIR NLO crystals that incorporate this unit, with only one example reported to date.

View Article and Find Full Text PDF

Many biological fibrous tissues exhibit distinctive mechanical properties arising from their highly organized fibrous structure. In disease conditions, alterations in the primary components of these fibers, such as type I collagen molecules in bone, tendons, and ligaments, assembly into a disorganized fibers architecture generating a weak and/or brittle material. Being able to quantitatively assess the fibers orientation and organization in biological tissue may help improve our understanding of their contribution to the tissue and organ mechanical integrity, and assess disease progress and therapy effect.

View Article and Find Full Text PDF

Two-dimensional (2D) materials with spontaneous polarization can exhibit large second-order nonlinear optical (NLO) effects. Here, we present a series of stable distorted monolayers by using first-principles calculations and lattice vibration analysis. The structural distortion leads to a lower polar symmetry, giving rise to intrinsic ferroelectricity with a Curie point up to room temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!