DC Water and Sewer Authority and lead in drinking water: a case study in environmental health risk management.

J Public Health Manag Pract

Department of Environmental and Occupational Health, School of Public Health and Health Services, The George Washington University, 2100 M St, NW, Suite 203, Washington, DC 20052, USA.

Published: February 2008

In 2001, following a change in disinfection agent in anticipation of the Environment Protection Agency Disinfection Byproduct Rule, lead levels began rising in drinking water in Washington, District of Columbia, and in 2002, the DC Water and Sewer Authority was found to have exceeded the Environment Protection Agency lead action level, requiring compliance with a series of measures under the Lead and Copper Rule. In 2004, the issue became a public concern, drawing considerable media attention. The problem was eventually resolved through the application of orthophosphate but while it played out, the utility was forced to respond to a novel public health issue with few risk management options. This case study examines the lessons learned.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.PHH.0000303411.74108.9fDOI Listing

Publication Analysis

Top Keywords

water sewer
8
sewer authority
8
drinking water
8
case study
8
risk management
8
environment protection
8
protection agency
8
water
4
lead
4
authority lead
4

Similar Publications

Urban stormwater and rainwater in water-stressed cities serve as critical vectors for the transport and dispersion of pollutants, including very mobile compounds These pollutants, which can be influenced by factors such as land use, rainfall intensity, and urban infrastructure, pose significant risks to both human and environmental health. Although several priority pollutants have traditionally been detected in urban stormwater, little is known about the presence of very mobile compounds that may threaten urban drinking water supplies and pose environmental risks to aquatic species. In this study, 131 urban rain and stormwater samples were collected from three districts of Barcelona (Spain) and analysed for 26 very mobile pollutants that are often overlooked in conventional monitoring efforts.

View Article and Find Full Text PDF

Although the paper industry processes polymeric materials and discharges large amounts of wastewater, no research on microplastics in the wastewater from paper mills has been published to date. This study is the first to investigate this issue. The wastewater treatment plants of twelve representatively selected German paper mills were investigated using an analysis protocol based on µ-Raman spectroscopy.

View Article and Find Full Text PDF

Due to accelerating climate change and the need for new development to accommodate population growth, adaptation of urban drainage systems has become a pressing issue in cities. Questions arise whether decentralised urban drainage systems are a better alternative to centralised systems, and whether Nature Based Solutions' (NBS) multifunctionality also brings economic benefits. This research aims to develop spatio-economic scenarios to support cities in increasing their resilience to urban flooding with NBS.

View Article and Find Full Text PDF

Antimicrobial risk assessment-Aggregating aquatic chemical and resistome emissions.

Water Res

December 2024

Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA27AY, UK; SWING - Department of Built Environment, Oslo Metropolitan Uni., St Olavs Plass, Oslo 0130, Norway. Electronic address:

Urban water systems receive and emit antimicrobial chemicals, resistant bacterial strains, and resistance genes (ARGs), thus representing "antimicrobial hotspots". Currently, regional environmental risk assessment (ERA) is carried out using drug consumption data and threshold concentrations derived based on chemical-specific minimum inhibitory concentration values. A legislative proposal by the European Commission released in 2022 addresses the need to include selected ARGs besides the chemical concentration-based ERAs.

View Article and Find Full Text PDF

Stormwater discharges affect PFAS occurrence, concentrations, and spatial distribution in water and bottom sediment of urban streams.

Water Res

December 2024

Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden. Electronic address:

Per- and polyfluoroalkyl substances (PFAS) are extensively used in urban environments and are, thus, found in urban stormwater. However, the relevance of stormwater as a pathway for PFAS to urban streams is largely unknown. This study evaluated the impact of urban stormwater runoff on PFAS concentrations and spatial distribution in three urban streams affected by stormwater discharges from separate sewer systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!