Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Cranial skeletogenic mesenchyme is derived from two distinct embryonic sources: mesoderm and cranial neural crest. Previous studies have focused on molecular and cellular differences of juvenile and adult osteoblasts.
Methods: To further understand the features of mouse-derived juvenile osteoblasts, the authors separated calvarial osteoblasts by their developmental origins: frontal bone-derived osteoblasts from cranial neural crest, and parietal bone-derived osteoblasts from paraxial mesoderm. Cells were harvested from a total of 120 mice.
Results: Interestingly, the authors observed distinct morphologies and proliferation potential of the two populations of osteoblasts. Osteogenic genes such as alkaline phosphatase, osteopontin, collagen I, and Wnt5a, which was recently identified as playing a role in skeletogenesis, were abundantly expressed in parietal bone-derived osteoblasts versus frontal bone-derived osteoblasts. In addition, fibroblast growth factor (FGF) receptor 2, and FGF-18 were more highly expressed in the parietal bone-derived osteoblasts, suggesting a more differentiated phenotype. In contrast, FGF-2, and adhesion molecules osteoblast cadherins and bone morphogenetic protein receptor IB, the bone tissue-specific type receptor were overexpressed in frontal bone-derived osteoblasts compared with parietal bone-derived osteoblasts.
Conclusions: The authors observed that although neural crest-derived osteoblasts represented a population of less differentiated, faster growing cells, they formed bone nodules more rapidly than parietal bone-derived osteoblasts. This in vitro study suggests that embryonic tissue derivations influence postnatal in vitro calvarial osteoblast cell biology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.prs.0000279491.48283.51 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!