Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: QuikClot is a zeolite-based dressing approved and deployed by military for the arrest of severe combat-induced hemorrhage. A novel formulation (bagged QuikClot [ACS]) of the original granular QuikClot (QC) has been proposed to facilitate the application of the hemostatic dressings under battlefield conditions. This study compares the hemostatic efficacy of ACS and QC in controlling blood loss and improving survival in a swine model of uncontrolled hemorrhage induced by complex groin injury.
Methods: After transection of the femoral vasculature, anesthetized Yorkshire pigs (n = 32) were hemorrhaged for 3 minutes and randomized into four groups: no treatment (NONE) or application of standard dressing (SD), QC, or ACS. At 15 minutes, resuscitation was initiated by infusion of 500 mL Hextend during a span of 30 minutes. Vital signs were continuously recorded throughout the 4-hour experimental period. In addition, blood loss and temperature at the dressing and tissue interface were continuously recorded.
Results: After 3 minutes, average blood loss was 44.7% +/- 11.9% estimated blood volume (EBV) for all animals (34.1 +/- 3.2 kg). Posttreatment blood loss was significantly higher (p < 0.01) for NONE- and SD-treated animals (31.5% +/- 21.8% and 22.3% +/- 12.6% EBV, respectively) as compared with animals treated with QC and ACS (7.4% +/- 7.1% and 10.3% +/- 6.9%, respectively). All NONE animals died at approximately 60 minutes. Times until death were slightly greater for animals treated with SD (96.8 minutes) and significantly greater for animals treated with QC (188 minutes) and ACS (194 minutes). Overall survival to 4 hours for SD (1 of 8, 12.5%) was significantly lower (p < 0.02) than for QC (6 of 8, 75%) and for ACS (6 of 8, 75%) treatments. Elevated temperatures at the dressing and tissue interface were seen in animals treated with QC and ACS (average at 8 minutes was 58.1 +/- 4.5 degrees C and 58.2 +/- 5.3 degrees C, respectively) compared with SD treated animals (38.8 +/- 2.7 degrees C). Histologic examination revealed more edema in muscular tissue of animals treated with ACS as compared with in QC-treated animals.
Conclusions: ACS was as efficacious as original granular QC in inducing hemostasis and improving survival as compared with the efficacy of SD. Easier and more rapid application and complete removal of ACS may offer a distinct advantage in battlefield resuscitation efforts to enhance a clean wound site and eventual surgical repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/TA.0b013e31805f7023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!