Here we report the new features and improvements in our latest release of the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/), a comprehensive annotation resource for human genes and transcripts. H-InvDB, originally developed as an integrated database of the human transcriptome based on extensive annotation of large sets of full-length cDNA (FLcDNA) clones, now provides annotation for 120 558 human mRNAs extracted from the International Nucleotide Sequence Databases (INSD), in addition to 54 978 human FLcDNAs, in the latest release H-InvDB_4.6. We mapped those human transcripts onto the human genome sequences (NCBI build 36.1) and determined 34 699 human gene clusters, which could define 34 057 (98.1%) protein-coding and 642 (1.9%) non-protein-coding loci; 858 (2.5%) transcribed loci overlapped with predicted pseudogenes. For all these transcripts and genes, we provide comprehensive annotation including gene structures, gene functions, alternative splicing variants, functional non-protein-coding RNAs, functional domains, predicted sub cellular localizations, metabolic pathways, predictions of protein 3D structure, mapping of SNPs and microsatellite repeat motifs, co-localization with orphan diseases, gene expression profiles, orthologous genes, protein-protein interactions (PPI) and annotation for gene families. The current H-InvDB annotation resources consist of two main views: Transcript view and Locus view and eight sub-databases: the DiseaseInfo Viewer, H-ANGEL, the Clustering Viewer, G-integra, the TOPO Viewer, Evola, the PPI view and the Gene family/group.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2238988PMC
http://dx.doi.org/10.1093/nar/gkm999DOI Listing

Publication Analysis

Top Keywords

comprehensive annotation
12
h-invitational database
8
database h-invdb
8
annotation resource
8
human
8
resource human
8
human genes
8
genes transcripts
8
latest release
8
annotation
7

Similar Publications

Table Extraction with Table Data Using VGG-19 Deep Learning Model.

Sensors (Basel)

January 2025

Faculty of Science and Environmental Studies, Department of Computer Science, Lakehead University, Thunder Bay, ON P7B 5E1, Canada.

In recent years, significant progress has been achieved in understanding and processing tabular data. However, existing approaches often rely on task-specific features and model architectures, posing challenges in accurately extracting table structures amidst diverse layouts, styles, and noise contamination. This study introduces a comprehensive deep learning methodology that is tailored for the precise identification and extraction of rows and columns from document images that contain tables.

View Article and Find Full Text PDF

Prioritizing Context-Dependent Cancer Gene Signatures in Networks.

Cancers (Basel)

January 2025

Avantyx Pharmaceuticals, Miami, FL 33136, USA.

There are numerous ways of portraying cancer complexity based on combining multiple types of data. A common approach involves developing signatures from gene expression profiles to highlight a few key reproducible features that provide insight into cancer risk, progression, or recurrence. Normally, a selection of such features is made through relevance or significance, given a reference context.

View Article and Find Full Text PDF

Salt tolerance is a critical trait for plant survival and productivity in saline environments. Development of salt tolerant crops is a practical strategy for addressing soil salinity issues. In this study, RNA-Seq analysis was performed using two wheat cultivars with contrasting salt tolerance (Neixiang188, tolerant and Barra, sensitive) at 6 h and 24 h after salinity treatment to determine the genetic variations reflected in the RNA expression patterns and identify key genes associated with salt tolerance.

View Article and Find Full Text PDF

Mapping O- and N-Glycosylation in Transmembrane and Interface Regions of Proteins: Insights from a Database Search Study.

Int J Mol Sci

January 2025

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independenței Str., 050095 Bucharest, Romania.

Glycosylation is a critical post-translational modification that influences protein folding, stability and function. While extensively studied in extracellular and intracellular regions, glycosylation within transmembrane (TM) regions and at membrane interfaces remains poorly understood. This study aimed to map O- and N-glycosylation sites in these regions using a comprehensive database search and structural validation where possible.

View Article and Find Full Text PDF

A Unique Expression Profile Responding to Powdery Mildew in Wild Emmer Wheat D430.

Int J Mol Sci

December 2024

Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China.

Powdery mildew, caused by f. sp. (), is a disease that seriously harms wheat production and occurs in all wheat-producing areas around the world.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!