Arthropod photoreceptor evolution is a prime example of how evolution has used existing components in the origin of new structures. Here, we outline a comparative approach to understanding the mutational origins of novel structures, describing multiple examples from arthropod photoreceptor evolution. We suggest that developmental mechanisms have often split photoreceptors during evolution (field-splitting) and we introduce "co-duplication" as a null model for the mutational origins of photoreceptor components. Under co-duplication, gene duplication events coincide with the origin of a higher level structure like an eye. If co-duplication is rejected for a component, that component probably came to be used in a new photoreceptor through regulatory mutations. If not rejected, a gene duplication mutation may have allowed the component to be used in a new structure. In multiple case studies in arthropod photoreceptor evolution, we consistently reject the null hypothesis of co-duplication of genetic components and photoreceptors. Nevertheless, gene duplication events have in some cases occurred later, allowing divergence of photoreceptors. These studies provide a new perspective on the evolution of arthropod photoreceptors and provide a comparative approach that generalizes to the study of any evolutionary novelty.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.asd.2007.08.002 | DOI Listing |
Nat Commun
January 2025
Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
Sevenless, the Drosophila homologue of ROS1 (University of Rochester Sarcoma) (herein, dROS1) is a receptor tyrosine kinase (RTK) essential for the differentiation of Drosophila R7 photoreceptor cells. Activation of dROS1 is mediated by binding to the extracellular region (ECR) of the GPCR (G protein coupled receptor) BOSS (Bride Of Sevenless) on adjacent cells. Activation of dROS1 by BOSS leads to subsequent downstream signaling pathways including SOS (Son of Sevenless).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.
A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function.
View Article and Find Full Text PDFNat Commun
December 2024
Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
Taking advantage of the good mechanical strength of expanded Drosophila brains and to tackle their relatively large size that can complicate imaging, we apply potassium (poly)acrylate-based hydrogels for expansion microscopy (ExM), resulting in a 40x plus increased resolution of transgenic fluorescent proteins preserved by glutaraldehyde fixation in the nervous system. Large-volume ExM is realized by using an axicon-based Bessel lightsheet microscope, featuring gentle multi-color fluorophore excitation and intrinsic optical sectioning capability, enabling visualization of Tm5a neurites and L3 lamina neurons with photoreceptors in the optic lobe. We also image nanometer-sized dopaminergic neurons across the same intact iteratively expanded Drosophila brain, enabling us to measure the 3D expansion ratio.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Neurobiology, Stanford University, Stanford, CA 94305, USA. Electronic address:
A critical goal of vision is to detect changes in light intensity, even when these changes are blurred by the spatial resolution of the eye and the motion of the animal. Here, we describe a recurrent neural circuit in Drosophila that compensates for blur and thereby selectively enhances the perceived contrast of moving edges. Using in vivo, two-photon voltage imaging, we measured the temporal response properties of L1 and L2, two cell types that receive direct synaptic input from photoreceptors.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia.
Stomatopods, commonly known as mantis shrimps, possess intricate colour vision with up to 12 photoreceptor classes arranged in four specialised ommatidia rows (rows 1-4 in the midband region of the eye) for colour perception. Whereas 2-4 spectral sensitivities suffice for most visual systems, the function and mechanism behind stomatopods' 12-channel colour vision remains unclear. Previous anatomical and behavioural studies have suggested that binning and opponent processing mechanisms may coexist in stomatopod colour vision.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!