The C-terminal activation function-2 (AF-2) helix plays a crucial role in retinoid X receptor alpha (RXRalpha)-mediated gene expression. Here, we report a nuclear magnetic resonance (NMR) study of the RXRalpha ligand-binding domain complexed with 9-cis-retinoic acid and a glucocorticoid receptor-interacting protein 1 peptide. The AF-2 helix and most of the C-terminal residues were undetectable due to a severe line-broadening effect. Due to its outstanding signal-to-noise ratio, the C-terminus residue, threonine 462 (T462) exhibited two distinct crosspeaks during peptide titration, suggesting that peptide binding was in a slow exchange regime on the chemical shift timescale. Consistently, the K(d) derived from T462 intensity decay agreed with that derived from isothermal titration calorimetry. Furthermore, the exchange contribution to the (15)N transverse relaxation rate was measurable in either T462 or the bound peptide. These results suggest that T462 is a sensor for coactivator binding and is a potential probe for AF-2 helix mobility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277333 | PMC |
http://dx.doi.org/10.1016/j.bbrc.2007.12.051 | DOI Listing |
Molecules
October 2024
School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
Thiazolidinediones (TZDs) including rosiglitazone and pioglitazone function as peroxisome proliferator-activated receptor gamma (PPARγ) full agonists, which have been known as a class to be among the most effective drugs for the treatment of type 2 diabetes mellitus (T2DM). However, side effects of TZDs such as fluid retention and weight gain are associated with their full agonistic activities toward PPARγ induced by the AF-2 helix-involved "locked" mechanism. Thereby, this study aimed to obtain novel PPARγ partial agonists without direct interaction with the AF-2 helix.
View Article and Find Full Text PDFInt J Mol Sci
November 2023
Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand.
(Bt) strains produce pore-forming toxins (PFTs) that attack insect pests. Information for pre-pore and pore structures of some of these Bt toxins is available. However, for the three-domain (I-III) crystal (Cry) toxins, the most used Bt toxins in pest control, this crucial information is still missing.
View Article and Find Full Text PDFInt J Mol Sci
October 2023
Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC H7V 1B7, Canada.
Transmembrane carriers of the Slc11 family catalyze proton (H)-dependent uptake of divalent metal ions (Me) such as manganese and iron-vital elements coveted during infection. The Slc11 mechanism of high-affinity Me cell import is selective and conserved between prokaryotic (MntH) and eukaryotic (Nramp) homologs, though processes coupling the use of the proton motive force to Me uptake evolved repeatedly. Adding bacterial piracy of genes spread in distinct environmental niches suggests selective gain of function that may benefit opportunistic pathogens.
View Article and Find Full Text PDFPLoS One
April 2023
Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea.
Estrogen-related receptor gamma (ERRγ), the latest member of the ERR family, does not have any known reported natural ligands. Although the crystal structures of the apo, agonist-bound, and inverse agonist-bound ligand-binding domain (LBD) of ERRγ have been solved previously, their dynamic behavior has not been studied. Hence, to explore the intrinsic dynamics of the apo and ligand-bound forms of ERRγ, we applied long-range molecular dynamics (MD) simulations to the crystal structures of the apo and ligand-bound forms of the LBD of ERRγ.
View Article and Find Full Text PDFBiomed Pharmacother
October 2022
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China. Electronic address:
PPARγ is well-known as the target receptor of TZD anti-diabetic drugs. However, recently the therapeutic benefits of these TZD drugs have been compromised by many severe side effects because of their full PPARγ agonistic action to lock the AF-2 helix. Herein, we conducted a virtual screening in the combination with structure-based design, synthesis and biological evaluation both in vitro and in vivo, leading to the identification of a potent candidate YG-C-20 as the SPPARγM with improved and safer anti-diabetic therapeutics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!