Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cell cycle progression is regulated by cyclins and cyclin-dependent kinases, which are formed at specific stages of the cell cycle and regulate the G1/S and G2/M phase transitions, employing a series of "checkpoints" governed by phosphorylation of their substrates. Tumor development is associated with the loss of these checkpoint controls, and this provides an approach for the development of therapeutic agents that can specifically target tumor cells. Here, we describe the synthesis and SAR of a novel group of cytotoxic molecules that selectively induce growth arrest of normal cells in the G1 phase while inducing a mitotic arrest of tumor cells resulting in selective killing of tumor cell populations with little or no effect on normal cell viability. The broad spectrum of antitumor activity in vitro and xenograft models, lack of in vivo toxicity, and drug resistance suggest potential for use of these agents in cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm701077b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!