Three-dimensional second-harmonic generation imaging with femtosecond laser pulses.

Opt Lett

Department of Physical Optics, School of Physics A28, University of Sydney, Sydney, New South Wales 2006, Australia.

Published: August 1998

A three-dimensional reflectance scanning optical microscope based on the nonlinear optical phenomenon of second-harmonic generation is presented. A mode-locked Ti:sapphire laser producing <90-fs pulses at approximately 790 nm was used, and the images were constructed by scanning of an object, which possessed local second-order nonlinearity, relative to a focused spot from the laser. The second-harmonic light at approximately 395 nm generated by the specimen was separated from the fundamental beam by use of dichroic and interference filters and was detected by a photodiode. The technique was then used to characterize the distribution of second-order nonlinearity and microstructure of the nonlinear material lithium triborate.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.23.001209DOI Listing

Publication Analysis

Top Keywords

second-harmonic generation
8
three-dimensional second-harmonic
4
generation imaging
4
imaging femtosecond
4
femtosecond laser
4
laser pulses
4
pulses three-dimensional
4
three-dimensional reflectance
4
reflectance scanning
4
scanning optical
4

Similar Publications

In this paper, we demonstrate a high-contrast front-end laser system based on Yb: YAG solid-state laser for Ti: sapphire terminal amplification. An ultrafast Yb: YAG solid-state laser is used to generate a broad-spectrum seed through white light generation (WLG), and then the signal light near 1600 nm is amplified by three-level colinear optical parametric chirped pulse amplification (OPCPA). Finally, a fs second harmonic generation (SHG) is used to obtain a laser output with a central wavelength of 795 nm, a pulse width of 40.

View Article and Find Full Text PDF

Nonlinear emission phenomena observed in transition metal dichalcogenides (TMDCs) have significantly advanced the development of robust nonlinear optical sources within two-dimensional materials. However, the intrinsic emission characteristics of TMDCs are inherently dependent on the specific material, which constrains their tunability for practical applications. In this study, we propose a strategy for the selective enhancement and modification of second-harmonic generation (SHG) emission in a multilayer WS flake through the implementation of a silicon (Si)-based circular Bragg grating (CBG) structure positioned on an Au/SiO substrate.

View Article and Find Full Text PDF

Second harmonic generation (SHG) measurements using SHG-active dye molecules have recently attracted attention as a method to detect the formation of pores in phospholipid bilayers. The bilayers, in which the dye molecules are embedded in the outer leaflet, exhibit a noncentrosymmetric structure, generating SHG signals. However, when pores form, these dye molecules translocate through the pores into the inner leaflet, leading to a more centrosymmetric structure and the subsequent loss of the SHG signals.

View Article and Find Full Text PDF

Photic drive response in people with epilepsy: Exploring the interaction with background alpha rhythm.

Vision Res

January 2025

Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia. Electronic address:

Photic drive responses (PDRs) are used to explore cortical hyperexcitability. We quantified PDRs and interactions with the alpha rhythm in people with epilepsy (PwE). Fifteen PwE (mean age ± SD 47.

View Article and Find Full Text PDF

In the search for new ultraviolet (UV) nonlinear optical (NLO) materials, two novel cadmium mixed halide compounds, (NH)CdClF and (NH)CdBrF, are successfully synthesized via hydrothermal methods. These compounds crystallize in the noncentrosymmetric (NCS) space group, R32, and are composed of distorted octahedral [CdXF] (X═Cl or Br) units, which extend into a 3D framework. Remarkably, both compounds demonstrate strong second-harmonic generation (SHG) efficiencies-3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!