Pat1 contains distinct functional domains that promote P-body assembly and activation of decapping.

Mol Cell Biol

Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, 1007 E. Lowell St., Tucson, AZ 85721-0206, USA.

Published: February 2008

The control of mRNA degradation and translation are important aspects of gene regulation. Recent results suggest that translation repression and mRNA decapping can be intertwined and involve the formation of a quiescent mRNP, which can accumulate in cytoplasmic foci referred to as P bodies. The Pat1 protein is a key component of this complex and an important activator of decapping, yet little is known about its function. In this work, we analyze Pat1 in Saccharomyces cerevisiae function by deletion and functional analyses. Our results identify two primary functional domains in Pat1: one promoting translation repression and P-body assembly and a second domain promoting mRNA decapping after assembly of the mRNA into a P-body mRNP. In addition, we provide evidence that Pat1 binds RNA and has numerous domain-specific interactions with mRNA decapping factors. These results indicate that Pat1 is an RNA binding protein and a multidomain protein that functions at multiple stages in the process of translation repression and mRNA decapping.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2258743PMC
http://dx.doi.org/10.1128/MCB.00936-07DOI Listing

Publication Analysis

Top Keywords

mrna decapping
16
translation repression
12
functional domains
8
p-body assembly
8
repression mrna
8
pat1
6
decapping
6
mrna
6
pat1 distinct
4
distinct functional
4

Similar Publications

Regulation of abscisic acid receptor mRNA stability: Involvement of microRNA5628 in PYL6 transcript decay.

Plant Physiol

December 2024

Laboratory of Plant Genetics, Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-875 Campinas, São Paulo, Brazil.

Phytohormone signaling is fine-tuned by regulatory feedback loops. The phytohormone abscisic acid (ABA) plays key roles in plant development and abiotic stress tolerance. PYRABACTIN RESISTENCE 1/PYR1-LIKE/REGULATORY COMPONENT OF ABA RECEPTOR (PYR/PYL/RCAR) receptors sense ABA, and in turn, ABA represses their expression.

View Article and Find Full Text PDF

DCP1A, a MEK substrate, regulates the self-renewal and differentiation of mouse embryonic stem cells.

Cell Rep

December 2024

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China. Electronic address:

Mitogen-activated extracellular signal-regulated kinase (MEK) inhibitors are widely applied to maintain pluripotency, while prolonged MEK inhibition compromises the developmental potential of mouse embryonic stem cells (ESCs). To understand the mechanism of MEK in pluripotency maintenance, we first demonstrated that MEK regulates gene expression at post-transcriptional steps. Consistently, many of the 66 MEK substrates identified by quantitative phosphoproteomics analysis are involved in RNA processing.

View Article and Find Full Text PDF

During RNA turnover, the action of endo- and exo-ribonucleases can yield RNA decay intermediates with specific 5' ends. These RNA decay intermediates have been demonstrated to be the outcome of decapping, microRNA-directed endo-cleavage, or the protected fragments of ribosomes and exon-junction complexes. Therefore, global analysis of RNA decay intermediates can facilitate studies of many RNA decay pathways.

View Article and Find Full Text PDF

Transcriptome-Wide Analysis of the 5' Cap Status of RNA Using 5' Monophosphate-Dependent Exonuclease Digestion and RNA Sequencing.

Methods Mol Biol

November 2024

ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France.

Eukaryotic mRNAs carry an N7-methylguanosine (mG) cap structure at their 5' extremity, which protects them from the degradation by 5'-3' exoribonucleases and plays a pivotal role in mRNA metabolism, promoting splicing, nuclear export, and translation. Decapping, the enzymatic process that removes this structure, is a key event during cytoplasmic mRNA 5'-3' decay, leading to the degradation of the transcript body by Xrn1. In this chapter, we describe a procedure to assess the cap status of RNA at the transcriptome level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!