The control of mRNA degradation and translation are important aspects of gene regulation. Recent results suggest that translation repression and mRNA decapping can be intertwined and involve the formation of a quiescent mRNP, which can accumulate in cytoplasmic foci referred to as P bodies. The Pat1 protein is a key component of this complex and an important activator of decapping, yet little is known about its function. In this work, we analyze Pat1 in Saccharomyces cerevisiae function by deletion and functional analyses. Our results identify two primary functional domains in Pat1: one promoting translation repression and P-body assembly and a second domain promoting mRNA decapping after assembly of the mRNA into a P-body mRNP. In addition, we provide evidence that Pat1 binds RNA and has numerous domain-specific interactions with mRNA decapping factors. These results indicate that Pat1 is an RNA binding protein and a multidomain protein that functions at multiple stages in the process of translation repression and mRNA decapping.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2258743 | PMC |
http://dx.doi.org/10.1128/MCB.00936-07 | DOI Listing |
Plant Physiol
December 2024
Laboratory of Plant Genetics, Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-875 Campinas, São Paulo, Brazil.
Phytohormone signaling is fine-tuned by regulatory feedback loops. The phytohormone abscisic acid (ABA) plays key roles in plant development and abiotic stress tolerance. PYRABACTIN RESISTENCE 1/PYR1-LIKE/REGULATORY COMPONENT OF ABA RECEPTOR (PYR/PYL/RCAR) receptors sense ABA, and in turn, ABA represses their expression.
View Article and Find Full Text PDFCell Rep
December 2024
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China. Electronic address:
Mitogen-activated extracellular signal-regulated kinase (MEK) inhibitors are widely applied to maintain pluripotency, while prolonged MEK inhibition compromises the developmental potential of mouse embryonic stem cells (ESCs). To understand the mechanism of MEK in pluripotency maintenance, we first demonstrated that MEK regulates gene expression at post-transcriptional steps. Consistently, many of the 66 MEK substrates identified by quantitative phosphoproteomics analysis are involved in RNA processing.
View Article and Find Full Text PDFMol Plant
December 2024
Leibniz-Institute of Vegetable and Ornamental Crops e.V., 14979 Großbeeren, Germany. Electronic address:
Methods Mol Biol
November 2024
Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
During RNA turnover, the action of endo- and exo-ribonucleases can yield RNA decay intermediates with specific 5' ends. These RNA decay intermediates have been demonstrated to be the outcome of decapping, microRNA-directed endo-cleavage, or the protected fragments of ribosomes and exon-junction complexes. Therefore, global analysis of RNA decay intermediates can facilitate studies of many RNA decay pathways.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
ncRNA, Epigenetic and Genome Fluidity, CNRS UMR3244, Sorbonne Université, PSL University, Institut Curie, Paris, France.
Eukaryotic mRNAs carry an N7-methylguanosine (mG) cap structure at their 5' extremity, which protects them from the degradation by 5'-3' exoribonucleases and plays a pivotal role in mRNA metabolism, promoting splicing, nuclear export, and translation. Decapping, the enzymatic process that removes this structure, is a key event during cytoplasmic mRNA 5'-3' decay, leading to the degradation of the transcript body by Xrn1. In this chapter, we describe a procedure to assess the cap status of RNA at the transcriptome level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!