Streptococcus uberis UCN 42, isolated from a case of bovine mastitis, was intermediately resistant to lincomycin (MIC = 2 microg/ml) while remaining susceptible to clindamycin (MIC = 0.06 microg/ml) and erythromycin. A 1.1-kb SacI fragment was cloned from S. uberis UCN 42 total DNA on plasmid pUC 18 and introduced into Escherichia coli AG100A, where it conferred resistance to both clindamycin and lincomycin. The sequence analysis of the fragment showed the presence of a new gene, named lnu(D), that encoded a 164-amino-acid protein with 53% identity with Lnu(C) previously reported to occur in Streptococcus agalactiae. Crude lysates of E. coli AG100A containing the cloned lnu(D) gene inactivated lincomycin and clindamycin in the presence of ATP and MgCl(2). Mass spectrometry experiments demonstrated that the lnu(D) enzyme catalyzed adenylylation of clindamycin. A domain conserved in deduced sequences of lincosamide O-nucleotidyltransferases Lnu(A), Lnu(C), LinA(N2), and Lin(D) and in the aminoglycoside nucleotidyltransferase ANT(2'') was identified.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2224718 | PMC |
http://dx.doi.org/10.1128/AAC.01126-07 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!