A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genome wide screens in yeast to identify potential binding sites and target genes of DNA-binding proteins. | LitMetric

Knowledge of all binding sites for transcriptional activators and repressors is essential for computationally aided identification of transcriptional networks. The techniques developed for defining the binding sites of transcription factors tend to be cumbersome and not adaptable to high throughput. We refined a versatile yeast strategy to rapidly and efficiently identify genomic targets of DNA-binding proteins. Yeast expressing a transcription factor is mated to yeast containing a library of genomic fragments cloned upstream of the reporter gene URA3. DNA fragments with target-binding sites are identified by growth of yeast clones in media lacking uracil. The experimental approach was validated with the tumor suppressor protein p53 and the forkhead protein FoxI1 using genomic libraries for zebrafish and mouse generated by shotgun cloning of short genomic fragments. Computational analysis of the genomic fragments recapitulated the published consensus-binding site for each protein. Identified fragments were mapped to identify the genomic context of each binding site. Our yeast screening strategy, combined with bioinformatics approaches, will allow both detailed and high-throughput characterization of transcription factors, scalable to the analysis of all putative DNA-binding proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248728PMC
http://dx.doi.org/10.1093/nar/gkm1117DOI Listing

Publication Analysis

Top Keywords

binding sites
12
dna-binding proteins
12
genomic fragments
12
transcription factors
8
identify genomic
8
yeast
6
genomic
6
fragments
5
genome wide
4
wide screens
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!