Identification and characterization of the receptor for the Bacillus sphaericus binary toxin in the malaria vector mosquito, Anopheles gambiae.

Comp Biochem Physiol B Biochem Mol Biol

UMR1112 Réponses des Organismes aux Stress Environnementaux, INRA-UNSA, 400 Route des Chappes, BP 167, F-06903 Sophia-Antipolis, France.

Published: March 2008

The binary toxin (Bin) from Bacillus sphaericus exhibits a highly insecticidal activity against Culex and Anopheles mosquitoes. The cytotoxicity of Bin requires an interaction with a specific receptor present on the membrane of midgut epithelial cells in larvae. A direct correlation exists between binding affinity and toxicity. The toxin binds with high affinity to its receptor in its primary target, Culex pipiens, and displays a lower affinity to the receptor in Anopheles gambiae, which is less sensitive to Bin. Although the Bin receptor has previously been identified and named Cpm1 in C. pipiens, its structure in Anopheles remains unknown. In this study, we hypothesize that the Anopheles Bin receptor is an ortholog of Cpm1. By screening the Anopheles genomic database, we identified a candidate gene (Agm3) which is expressed primarily on the surface of midgut cells in larvae and which functions as a receptor for Bin. A Cpm1-like gene is also present in the Bin-refractory species Aedes aegypti. Overall, our results indicate that the three mosquito genes examined share a very similar organization and are strongly conserved at the amino acid level, in particular in the NH(2)-terminus, a region believed to contain the ligand binding site, suggesting that relatively few amino acids residues are critical for high affinity binding of the toxin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2007.11.002DOI Listing

Publication Analysis

Top Keywords

bacillus sphaericus
8
binary toxin
8
anopheles gambiae
8
cells larvae
8
high affinity
8
affinity receptor
8
bin receptor
8
receptor
7
anopheles
6
bin
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!