A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

N(2)O(3) enhances the nitrosative potential of IFNgamma-primed macrophages in response to Salmonella. | LitMetric

We show here that the nitric oxide (NO)-detoxifying Hmp flavohemoprotein increases by 3-fold the transcription of the Salmonella pathogenicity island 2 (SPI2) in macrophages expressing a functional inducible NO synthase (iNOS). However, Hmp does not prevent NO-related repression of SPI2 transcription in IFNgamma-primed phagocytes, despite preserving intracellular transcription of sdhA sdhB subunits of Salmonella succinate dehydrogenase within both control and IFNgamma-primed phagocytes. To shed light into the seemingly paradoxical role that Hmp plays in protecting intracellular SPI2 expression in various populations of macrophages, N(2)O(3) was quantified as an indicator of the nitrosative potential of Salmonella-infected phagocytes in different states of activation. Hmp was found to prevent the formation of 300nM N(2)O(3)/h/bacteria in IFNgamma-primed macrophages, accounting for about a 60% reduction of the nitrosative power of activated phagocytes. Utilization of the vacuolar ATPase inhibitor bafilomycin indicates that a fourth of the approximately 200nM N(2)O(3)/h sustained by IFNgamma-primed macrophages is generated in endosomal compartments via condensation of HNO(2). In sharp contrast, control macrophages infected with wild-type Salmonella produce as little N(2)O(3) as iNOS-deficient controls. Collectively, these findings indicate that the NO-metabolizing activity of Salmonella Hmp is functional in both control and IFNgamma-primed macrophages. Nonetheless, a substantial amount of the NO generated by IFNgamma-primed macrophages gives rise to N(2)O(3), a species that not only enhances the nitrosative potential of activated phagocytes but also avoids detoxification by Salmonella Hmp.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2329578PMC
http://dx.doi.org/10.1016/j.imbio.2007.09.019DOI Listing

Publication Analysis

Top Keywords

ifngamma-primed macrophages
20
nitrosative potential
12
enhances nitrosative
8
macrophages
8
hmp prevent
8
ifngamma-primed phagocytes
8
control ifngamma-primed
8
activated phagocytes
8
salmonella hmp
8
ifngamma-primed
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!