In the cell walls of forage grasses, ferulic acid is esterified to arabinoxylans and participates with lignin monomers in oxidative coupling pathways to generate ferulate-polysaccharide-lignin complexes that cross-link the cell wall. Such cross-links hinder cell wall degradation by ruminant microbes, reducing plant digestibility. In this study, genetically modified Festuca arundinacea plants were produced expressing an Aspergillus niger ferulic acid esterase (FAEA) targeted to the vacuole. The rice actin promoter proved to be effective for FAEA expression, as did the cauliflower mosaic virus (CaMV) 35S and maize ubiquitin promoters. Higher levels of expression were, however, found with inducible heat-shock and senescence promoters. Following cell death and subsequent incubation, vacuole-targeted FAEA resulted in the release of both monomeric and dimeric ferulic acids from the cell walls, and this was enhanced several fold by the addition of exogenous endo-1,4-beta-xylanase. Most of the FAEA-expressing plants showed increased digestibility and reduced levels of cell wall esterified phenolics relative to non-transformed plants. It is concluded that targeted FAEA expression is an effective strategy for improving wall digestibility in Festuca and, potentially, other grass species used for fodder or cellulosic ethanol production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1467-7652.2007.00317.x | DOI Listing |
Phytother Res
January 2025
College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.
View Article and Find Full Text PDFCell Surf
December 2024
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain.
The activation of progenitor cells near wound sites is a common feature of regeneration across species, but the conserved signaling mechanisms responsible for this step in whole-body regeneration are still incompletely understood. The acoel undergoes whole-body regeneration using Piwi+ pluripotent adult stem cells (neoblasts) that accumulate at amputation sites early in the regeneration process. The EGFR signaling pathway has broad roles in controlling proliferation, migration, differentiation, and cell survival across metazoans.
View Article and Find Full Text PDFTropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy, and a single tropomyosin gene, , that produces seven isoforms. Three higher molecular weight isoforms (LEV-11A, D, O) regulate contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U).
View Article and Find Full Text PDFMutations in the gene cause the most common form of human hereditary hearing loss, known as DFNB1. is expressed in two cell groups of the cochlea-epithelial cells of the organ of Corti and fibrocytes of the inner sulcus and lateral wall-but not by sensory hair cells or neurons. Attempts to treat mouse models of DFNB1 with AAV vectors mediating nonspecific expression have not substantially restored function, perhaps because inappropriate expression in hair cells and neurons could compromise their electrical activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!