Klotho-deficient mice exhibit multiple pathological conditions resembling human aging. Our previous study showed alterations in the distribution of osteocytes and in the bone matrix synthesis in klotho-deficient mice. Although the bone and tooth share morphological features such as mineralization processes and components of the extracellular matrix, little information is available on how klotho deletion influences tooth formation. The present study aimed to elucidate the altered histology of incisors of klotho-deficient mice-comparing the findings with those from their wild-type littermates, by using immunohistochemistry for alkaline phosphatase (ALP), osteopontin, and dentin matrix protein-1 (DMP-1), terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end-labeling (TUNEL) detection for apoptosis, and electron probe microanalyzer (EPMA) analysis on calcium (Ca), phosphate (P), and magnesium (Mg). Klotho-deficient incisors exhibited disturbed layers of odontoblasts, predentin, and dentin, resulting in an obscure dentin-predentinal border at the labial region. Several odontoblast-like cells without ALP activity were embedded in the labial dentin matrix, and immunopositivity for DMP-1 and osteopontin was discernible in the matrix surrounding these embedded odontoblast-like cells. TUNEL detection demonstrated an apoptotic reaction in the embedded odontoblast-like cells and pulpal cells in the klotho-deficient mice. EPMA revealed lower concentrations of Ca, P, and Mg in the klotho-deficient dentin, except for the dentin around abnormal odontoblast-like cells. These findings suggest the involvement of the klotho gene in dentinogenesis and its mineralization.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.20630DOI Listing

Publication Analysis

Top Keywords

odontoblast-like cells
16
klotho-deficient mice
12
involvement klotho
8
dentin matrix
8
tunel detection
8
embedded odontoblast-like
8
dentin
6
klotho-deficient
6
matrix
5
cells
5

Similar Publications

Diabetes mellitus (DM) induced mitochondrial oxidative stress (OS) can lead to severe injury of dental pulp. The cerium oxide nanoparticles (CNP) have been proven to have excellent antioxidative activity. However, whether CNP can relieve dental pulp damage caused by DM and the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Odontogenic exosomes simulating the developmental microenvironment promote complete regeneration of pulp-dentin complex in vivo.

J Adv Res

January 2025

Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, People's Republic of China. Electronic address:

Introduction: Establishing an optimized regenerative microenvironment for pulp-dentin complex engineering has become increasingly critical. Recently, exosomes have emerged as favorable biomimetic nanotherapeutic tools to simulate the developmental microenvironment and facilitate tissue regeneration.

Objectives: This study aimed to elucidate the multifaceted roles of exosomes from human dental pulp stem cells (DPSCs) that initiated odontogenic differentiation while sustaining mesenchymal stem cell (MSC) characteristics in odontogenesis, angiogenesis, and neurogenesis during pulp-dentin complex regeneration.

View Article and Find Full Text PDF

Objectives: Dental pulp stem cells (DPSCs) are essential for reparative dentinogenesis following damage or infection. DPSCs surrounding the blood vessels in the central region of the dental pulp actively proliferate after tooth injury and differentiate into new odontoblast-like cells or odontoblasts to form reparative dentin. However, the signaling pathways involved in undifferentiated and osteodifferentiated DPSCs under inflammatory conditions remain unclear.

View Article and Find Full Text PDF

Apical periodontitis is an inflammatory disease caused by bacterial infection in the root canal that spreads to the apical periodontal tissues, resulting in bone resorption around the root apex as the disease progresses. Vascular endothelial growth factor (VEGF), a growth factor involved in angiogenesis, plays an important role in bone remodeling. We reported that caffeic acid phenethyl ester (CAPE), a bioactive substance of propolis, induces VEGF in odontoblast-like cells and dental pulp cells.

View Article and Find Full Text PDF

Resin monomers induce apoptosis of the pulp-dentin complex through the mitochondrial pathway.

J Toxicol Sci

December 2024

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, People's Republic of China.

Numerous studies have confirmed that the apoptosis induced by the methacrylate resin monomers triethyleneglycol-dimethacrylate (TEGDMA), 2-hydroxy ethyl methacrylate (HEMA), etc., in pulp cells and odontoblast-like cells is caused mainly by oxidative stress (OS). Reactive oxygen species (ROS), recognized as the most important risk factor for apoptosis in cells of the pulp-dentin complex, are produced mainly via the mitochondrial respiratory chain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!