Repopulation of cochlear macrophages in murine hematopoietic progenitor cell chimeras: the role of CX3CR1.

J Comp Neurol

Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.

Published: February 2008

Cochlear macrophages have been shown to accumulate in the murine cochlea following acoustic trauma. This investigation was performed to determine whether cochlear macrophages could be replaced by donor transplantation of bone marrow precursors. Lethally irradiated C57BL/6 mice were transplanted with hematopoietic precursors from CX3CR1(GFP/GFP) fetal mice. CX3CR1(GFP/GFP) mice express green fluorescent protein (GFP) in monocytes and macrophages and possess no functional CX3CR1. Donor monocytes and macrophages can be easily traced in the wild-type recipient with fluorescent microscopy. We studied mice at 2-16 weeks after transplantation to assess repopulation of cochlear macrophages. A separate group of chimeras was exposed to octave band noise (8-16 kHz for 2 hours) 2 weeks after transplantation to evaluate the migration properties of donor hematopoietic precursors. We found that macrophages derived from donor hematopoietic precursors appeared in cochlea 3-4 weeks after transplantation and increased week by week. Noise exposure induced a massive accumulation of leukocytes, particularly in the spiral ligament of the basal turn. There was no difference between CX3CR1(GFP/GFP) donor/wild-type recipient chimeras and the wild-type donor/wild-type recipient chimeras in hearing thresholds, accumulation of cochlear macrophages, or tissue injury after noise exposure. These data indicate that cochlear macrophages are derived from bone marrow precursors and that they are an exchanging and migratory population. Furthermore, CX3CR1 in hematopoietic precursors is not necessary for macrophage migration into cochlea and when deleted in this cell population, the absence of CX3CR1 does not substantially effect the outcomes after noise.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.21583DOI Listing

Publication Analysis

Top Keywords

cochlear macrophages
24
hematopoietic precursors
16
weeks transplantation
12
macrophages
9
repopulation cochlear
8
bone marrow
8
marrow precursors
8
monocytes macrophages
8
donor hematopoietic
8
macrophages derived
8

Similar Publications

GJB2 encodes connexin 26 (Cx26), the most commonly mutated gene causing hereditary non-syndromic hearing loss. Cx26 is mainly expressed in supporting cells (SCs) and fibrocytes in the mammalian cochlea. Gene therapy is currently considered the most promising strategy for eradicating genetic diseases.

View Article and Find Full Text PDF

Noise exposure is one of the most common causes of sensorineural hearing loss. Although many studies considered inflammation to be a major contributor to noise-induced hearing loss, the process of cochlear inflammation is still unclear. Studies have found that activation of the NF-κB signaling pathway results in the accumulation of macrophages in the inner ear plays an important role in hair cell damage.

View Article and Find Full Text PDF

Repeated low-intensity noise exposure exacerbates age-related hearing loss via RAGE signaling pathway.

Neurobiol Dis

January 2025

Senior Department of Otorhinolaryngology Head and Neck Surgery, The 6th Medical Center, Chinese PLA General Hospital, Medical School of Chinese PLA, State Key Laboratory of Hearing and Balance Science, National Clinical Research Center for Otorhinolaryngologic Diseases, Beijing 100048, China. Electronic address:

Repeated low-intensity noise exposure is prevalent in industrialized societies. It has long been considered risk-free until recent evidence suggests that the temporary threshold shift (TTS) induced by such exposure might be a high-risk factor for hearing loss. This study was conducted to further investigate the manner in which repeated low-intensity noise exposure contributed to hearing damage.

View Article and Find Full Text PDF

Interleukin 8 exacerbates age-related hearing loss through regulating perivascular-resident macrophage-like melanocytes viability and the permeability of the endothelial cells.

Int Immunopharmacol

January 2025

Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China; Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, Fujian 361005, China. Electronic address:

The etiology and mechanism causing Age-related hearing loss (ARHL) are not understood. This study aimed to investigate the molecular mechanism of interleukin 8 (IL-8) associated with ARHL. Sera content of IL-8 was significantly higher in patients with ARHL than normal volunteers and had a positive association with disease severity of ARHL.

View Article and Find Full Text PDF

Recent advances in fate mapping and single-cell technologies have revealed how the dynamics and function of tissue-resident macrophages are shaped by their environment. However, macrophages in sensory organs such as the cochlea where the central nervous system and peripheral nervous system meet remain understudied. Combining single-cell transcriptomics, fate mapping, and parabiosis experiments, we show that five types of myeloid cells including three tissue-resident macrophage subpopulations, coexist in the mouse cochlea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!