Purpose: Quantitate the interaction of mutant (R116C) and wildtype human alphaA crystallins with actin.

Methods: AlphaA crystallins, expressed in a recombinant system, were purified, followed by passage through an actin affinity column.

Results: Binding of mutant alphaA crystallin was significantly less than binding of wildtype alphaA crystallin.

Conclusions: The R116C mutation of alphaA crystallin found in human cataracts binds less to the cytoskeletal component actin. Since both alphaA crystallin and actin are necessary for proper development of the lens, decreased binding of the mutant protein to actin may perturb normal differentiation processes of lens cells which are necessary for transparency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2425674PMC
http://dx.doi.org/10.1080/02713680701769989DOI Listing

Publication Analysis

Top Keywords

alphaa crystallin
16
binding mutant
12
mutant r116c
8
r116c wildtype
8
wildtype alphaa
8
crystallin actin
8
alphaa crystallins
8
alphaa
7
actin
5
differential binding
4

Similar Publications

Crystallin proteins serve as both essential structural and as well as protective components of the ocular lens and are required for the transparency and light refraction properties of the organ. The mouse lens crystallin proteome is represented by αA-, αB-, βA1-, βA2-, βA3-, βA4-, βB1-, βB2-, βB3-, γA-, γB-, γC-, γD-, γE, γF-, γN-, and γS-crystallin proteins encoded by 16 genes. Their mutations are responsible for lens opacification and early onset cataract formation.

View Article and Find Full Text PDF

HSPB4 and HSPB5 (α-crystallins) have shown increasing promise as neuroprotective agents, demonstrating several anti-apoptotic and protective roles in disorders such as multiple sclerosis and diabetic retinopathy. HSPs are highly regulated by post-translational modification, including deamidation, glycosylation, and phosphorylation. Among them, T148 phosphorylation has been shown to regulate the structural and functional characteristics of HSPB4 and underlie, in part, its neuroprotective capacity.

View Article and Find Full Text PDF

Background: Human artificial corneas (HAC) generated by tissue engineering recently demonstrated clinical usefulness in the management of complex corneal diseases. However, the biological mechanisms associated to their regenerative potential need to be elucidated.

Methods: In the present work, we generated HAC using nanostructured fibrin-agarose biomaterials with cultured corneal epithelial and stromal cells, and we compared the structure and histochemical and immunohistochemical profiles of HAC with control native corneas (CTR-C) and limbus (CTR-L) to determine the level of biomimicry of the HAC with these two native organs.

View Article and Find Full Text PDF

The αA-crystallin protein plays a vital role in maintaining the refractive index and transparency of the eye lens. Significant clinical studies have emerged as the αA-crystallin is prone to aggregation, resulting in the formation of cataracts with varied etiologies due to mutations. This work aims to comprehend the structural and functional role of cataract-causing mutations in αA-crystallin, particularly at N-Terminal and α-Crystallin Domains, using in-silico approaches including molecular dynamics simulation.

View Article and Find Full Text PDF

isoAsp-Quest: workflow development for isoAsp identification using database searches.

J Biochem

January 2025

Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.

A recent study reported that isomerization of aspartyl residues (Asp) occurs in various tissues and proteins in vivo. For a comprehensive analysis of post-translational modifications, the mass spectrometry (MS)-based proteomic approach is a straightforward method; however, the isomerization of Asp does not alter its molecular weight. Therefore, a unique method is required to analyse Asp isomers using MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!