Currently, a change in pH(i) is believed to be the major signal in the chemosensitive (CS) response of brainstem neurons to hypercapnia; however, multiple factors (e.g., Ca2+, CO2, pH(i), and pHo) have been suggested to contribute to this increase in firing rate. While there is evidence for a significant role of pH(i) in the CS response, we hypothesize that hypercapnic acidosis (HA) can increase firing rate even with no change in pH(i). We tested several methods to clamp pH(i), including high intracellular buffer and the use of rapid diffusion of weak bases or weak acids through the cell membrane. We were able to clamp pH(i) during hypercapnic exposure using weak acids. We observed a CS response to HA, with pH(i) clamped, indicating that intracellular acidification, while sufficient to increase firing rate, is not required for the response of CS neurons. The CS response to HA without a change in pH(i) is most likely due to extracellular acidification and/or increased CO2 and strongly supports the multiple factors model of chemosensitive signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-0-387-73693-8_58DOI Listing

Publication Analysis

Top Keywords

change phi
12
increase firing
12
firing rate
12
chemosensitive response
8
response neurons
8
hypercapnic acidosis
8
phi
8
multiple factors
8
clamp phi
8
weak acids
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!