The catalytic mechanism of peroxiredoxins.

Subcell Biochem

Department of Biochemistry, Center for Structural Biology, BGTC, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.

Published: February 2008

AI Article Synopsis

Article Abstract

Peroxiredoxins carry out the efficient reduction of a typically broad range of peroxide substrates through an absolutely conserved, activated cysteine residue within a highly conserved active site pocket structure. Though details of reductive recycling after cysteine sulfenic acid formation at the active site vary among members of different Prx classes, local unfolding around the active site cysteine is likely generally required in these proteins for disulfide bond formation with a second resolving cysteine and/or for access of the reductant to the oxidized active site. The conformational change associated with the catalytic cycle and the redox-dependent decamer formation occurring in at least some typical 2-Cys Prxs have interesting implications in the interplay between active site loop dynamics, oligomerization state, catalytic efficiency and propensity toward inactivation during turnover in these important antioxidant enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4020-6051-9_4DOI Listing

Publication Analysis

Top Keywords

active site
20
active
5
site
5
catalytic mechanism
4
mechanism peroxiredoxins
4
peroxiredoxins peroxiredoxins
4
peroxiredoxins carry
4
carry efficient
4
efficient reduction
4
reduction typically
4

Similar Publications

Direct Methane to Methanol Conversion: An Overview of Non-Syn Gas Catalytic Strategies.

Chem Rec

January 2025

Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India.

Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts.

View Article and Find Full Text PDF

Supramolecularly Built Local Electric Field Microenvironment around Cobalt Phthalocyanine in Covalent Organic Frameworks for Enhanced Photocatalysis.

J Am Chem Soc

January 2025

Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

The local electric field (LEF) plays an important role in the catalytic process; however, the precise construction and manipulation of the electric field microenvironment around the active site remains a significant challenge. Here, we have developed a supramolecular strategy for the implementation of a LEF by introducing the host macrocycle 18-crown-6 (18C6) into a cobalt phthalocyanine (CoPc)-containing covalent organic framework (COF). Utilizing the supramolecular interaction between 18C6 and potassium ion (K), a locally enhanced K concentration around CoPc can be built to generate a LEF microenvironment around the catalytically active Co site.

View Article and Find Full Text PDF

Effect of the Electrolyte on the Oxygen Reduction Reaction with PCN-224(Co).

ChemSusChem

January 2025

Leiden University: Universiteit Leiden, Leiden Institute of Chemistry, Einsteinweg 55, Room number EE4.19, 2333 CC, Leiden, NETHERLANDS, KINGDOM OF THE.

Electrocatalysis in metal-organic frameworks is an interplay between the diffusion of charges, the intrinsic catalytic rate, and the mass-transport of reactants through the pores. Here a systematic study is carried out to investigate the role of the electrolyte nature and concentration on the oxygen reduction reaction (ORR) with the PCN-224(Co) MOF in aqueous electrolyte. It was found that the ORR activity is slightly influenced by the nature of the ions in solution, providing that the ionic strength is high enough to minimize the resistivity during the measurement.

View Article and Find Full Text PDF

Introduction: Schistosomiasis has for many years relied on a single drug, praziquantel (PZQ) for treatment of the disease. Immense efforts have been invested in the discovery of protein kinase (PK) inhibitors; however, given that the majority of PKs are still not targeted by an inhibitor with a useful level of selectivity, there is a compelling need to expand the chemical space available for synthesizing new, potent, and selective PK inhibitors. Small-molecule inhibitors targeting the ATP pocket of the catalytic domain of PKs have the potential to become drugs devoid of (major) side effects, particularly if they bind selectively.

View Article and Find Full Text PDF

Background: Schistosomiasis is caused by infection with parasitic worms and affects more than 250 million people globally. The detection of schistosome derived circulating cathodic and anodic antigens (CCA and CAA) has proven highly valuable for detecting active infections, causing both intestinal and urinary schistosomiasis.

Aim: The combined detection of CCA and CAA was explored to improve accuracy in detecting infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!