In previous studies, experimental splenosis was produced in normal rodents and in animals following splenectomy. Splenosis was more in splenectomised than in normal animals. In the present study, in animals into whom splenic fragments were implanted subcutaneously, there were less peritoneal splenic growth areas than in controls. The hypothesis is presented that there is a population size feedback control regulatory mechanism operating in splenic growth and regeneration. If such regulators are present in the circulation, administration of normal plasma should inhibit splenosis and this may serve as a model to isolate such regulators. This was not the case in these experiments.

Download full-text PDF

Source

Publication Analysis

Top Keywords

population size
8
size feedback
8
feedback control
8
control regulatory
8
splenic growth
8
studies splenic
4
splenic population
4
regulatory mechanisms
4
mechanisms previous
4
previous studies
4

Similar Publications

Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.

Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci.

View Article and Find Full Text PDF

Introduction/aims: The standard procedure to establish reference values in a neuromuscular laboratory involves examining healthy controls, as nerve size varies with the population and muscle echo intensity (EI) is device-specific. We aimed to derive these reference values by extrapolation from a studied sample (the e-norms method), compare them with published reference values, and determine their diagnostic accuracy.

Methods: We retrospectively analyzed data from consecutive patients who underwent nerve and/or muscle ultrasound in our ultrasound laboratory, which is a tertiary referral center for neuromuscular diseases in Southern Poland in the years 2018-2023.

View Article and Find Full Text PDF

Background: Individuals with cystic fibrosis (CF; a recessive disorder) have an increased risk of colorectal cancer (CRC). Evidence suggests individuals with a single CFTR variant may also have increased CRC risk.

Methods: Using population-based studies (GECCO, CORECT, CCFR, and ARIC; 53 785 CRC cases and 58 010 controls), we tested for an association between the most common CFTR variant (Phe508del) and CRC risk.

View Article and Find Full Text PDF

Aim: To systematically review the prevalence and incidence of osteoporosis, osteopenia, low bone mass, and fragility fracture in adults with cerebral palsy (CP), and identify the risk factors for osteoporosis and fracture.

Method: A systematic literature search was performed in the MEDLINE, PubMed, CINAHL, AMED, Cochrane Reviews, EMBASE, and EBM database reviews from inception until May 2024. Search terms covered a combination of keywords for CP, fracture, osteoporosis, incidence and prevalence, and risk factors.

View Article and Find Full Text PDF

The hoarding behaviour of animals has evolved to reduce starvation risk when food resources are scarce, but effects of food limitation on survival of hoarding animals is poorly understood. Eurasian pygmy owls (Glaucidium passerinum) hoard small mammals and birds in natural cavities and nest boxes in late autumn for later use in the following winter. We studied the relative influence of the food biomass in hoards of pygmy owls on their over-winter and over-summer apparent survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!