We report on the use of a novel technique to create a plasma waveguide suitable for guiding high-intensity laser pulses in underdense plasmas. A narrow channel of a clustering gas is dissociated with a low-intensity prepulse. This prepulse is followed by a high-intensity, focused laser pulse. The high absorption of the clusters surrounding the dissociated atomic channel causes the remaining annulus of clusters to become highly ionized, leaving low-density plasma in the center. We have interferometrically probed the formation of this channel with picosecond laser pulses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.23.000322 | DOI Listing |
Microsc Res Tech
January 2025
Department of Computer Science, Cihan University, Sulaimaniyah, Kurdistan Region, Iraq.
Waveguide evanescent field fluorescence microscopy (WEFF) is an evanescent-based microscopy that utilizes a confined thin film of light, around 100 nm, to image the plasma membrane of cells attached to a waveguide. Low photobleaching and low background besides its high axial resolution allows time-lapse imaging to investigate changes in cell morphology in the presence or absence of chemical agents. Both large field of view (FOV) and uniform illumination are very important while imaging cell-substrate contacts with an evanescent field.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China.
A silica waveguide thermo-optic mode switch with small radius bimodal S-bends is demonstrated in this study. The cascaded multimode interference coupler is adopted to implement the E and E mode selective output. The beam propagation method is used in design optimization.
View Article and Find Full Text PDFIn this Letter, over-correction of spherical aberration is used to counteract nonlinear effects such as Kerr self-focusing and plasma effects, resulting in more spherical and small-sized femtosecond laser-inscribed voxels within nonlinear materials. By strategically redirecting marginal focusing rays toward the beginning of the laser modification zone, the induced plasma prevents any rays from causing a structural modification beyond this zone, irrespective of any focus elongation caused by nonlinear effects. The method has been effectively validated across a range of materials, including ZnS, ZnSe, BIG, GeS, and SiO.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China.
The integration of lithium niobate (LiNbO or LN) and silicon (Si) has emerged as a promising heterogeneous platform for microelectromechanical systems (MEMSs) and photonic integrated circuits (PICs). Particularly, the lithium niobate on silicon (LNOS) architecture leverages the superior piezo-optomechanical properties of LN, making it compatible with superconducting circuits and quantum systems. This opens an avenue for the development of advanced quantum sensors and processors.
View Article and Find Full Text PDFSci Rep
October 2024
National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!