Ethanol tolerance, in which exposure leads to reduced sensitivity, is an important component of alcohol abuse and addiction. The molecular mechanisms underlying this process remain poorly understood. The BKCa channel plays a central role in the behavioral response to ethanol in Caenorhabditis elegans (Davies, A. G., Pierce-Shimomura, J. T., Kim, H., VanHoven, M. K., Thiele, T. R., Bonci, A., Bargmann, C. I., and McIntire, S. L. (2003) Cell 115, 655-666) and Drosophila (Cowmeadow, R. B., Krishnan, H. R., and Atkinson, N. S. (2005) Alcohol. Clin. Exp. Res. 29, 1777-1786) . In neurons, ethanol tolerance in BKCa channels has two components: a reduced number of membrane channels and decreased potentiation of the remaining channels (Pietrzykowski, A. Z., Martin, G. E., Puig, S. I., Knott, T. K., Lemos, J. R., and Treistman, S. N. (2004) J. Neurosci. 24, 8322-8332) . Here, heterologous expression coupled with planar bilayer techniques examines two additional aspects of tolerance in human BKCa channels. 1) Is acute tolerance observed in a single channel protein complex within a lipid environment reduced to only two lipids? 2) Does lipid bilayer composition affect the appearance of acute tolerance? We found that tolerance was observable in BKCa channels in membrane patches pulled from HEK cells and when they are placed into reconstituted 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine membranes. Furthermore, altering bilayer thickness by incorporating the channel into lipid mixtures of 1,2-dioleoyl-3-phosphatidylethanolamine with phosphatidylcholines of increasing chain length, or with sphingomyelin, strongly affected the sensitivity of the channel, as well as the time course of the acute response. Ethanol sensitivity changed from a strong potentiation in thin bilayers to inhibition in thick sphingomyelin/1,2-dioleoyl-3-phosphatidylethanolamine bilayers. Thus, tolerance can be an intrinsic property of the channel protein-lipid complex, and bilayer thickness plays an important role in shaping the pattern of response to ethanol. As a consequence of these findings the protein-lipid complex should be treated as a unit when studying ethanol action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4127471PMC
http://dx.doi.org/10.1074/jbc.M708214200DOI Listing

Publication Analysis

Top Keywords

response ethanol
12
bkca channels
12
tolerance intrinsic
8
lipid environment
8
ethanol tolerance
8
bilayer thickness
8
protein-lipid complex
8
tolerance
7
ethanol
6
bkca
5

Similar Publications

Screening and Selection of Native Lactic Acid Bacteria Isolated from Chilean Grapes.

Foods

January 2025

Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile.

The aim of this study was investigating the biological diversity of lactic acid bacteria isolated from Chilean grapes and identifying potential candidates for use as malolactic fermentation starter cultures. The isolated bacteria underwent a comprehensive six-stage screening process, which was mutually exclusive except for the evaluation of tyramine production and citric acid intake. This process included morphological, metabolic, fermentation yield, and resistance tests to identify promising malolactic strains.

View Article and Find Full Text PDF

This study evaluates the stress tolerance and metabolic adaptability of twelve yeast strains, including eleven commercial strains from Wyeast Laboratories and one prototrophic laboratory strain, under industrially relevant conditions. Yeast strains were assessed for their fermentation performance and stress responses under glucose limitation, osmotic stress, acid stress, elevated ethanol concentrations, and temperature fluctuations. Results revealed significant variability in glucose consumption, ethanol production, and stress tolerance across strains.

View Article and Find Full Text PDF

The demand for reliable, cost-effective, room temperature gas sensors with high sensitivity, selectivity, and short response times is rising, particularly for environmental monitoring, biomedicine, and agriculture. In this study, corncob waste-derived activated carbon (ACC) was combined with CuO nanoparticles and polyvinyl alcohol (PVA) to fabricate ACC/PVA/CuO composites with CuO loadings of 5, 10, and 15 wt.%.

View Article and Find Full Text PDF

The aim of the present study was to optimize the process parameters for the extraction and purification of total flavonoids from L., in addition to analyzing their chemical composition and evaluating their activity against varicella-zoster virus (VZV) and antioxidant activity. The optimum extraction process was determined using one-way and response surface methods with the following conditions: ethanol concentration of 82.

View Article and Find Full Text PDF

3D-printed poly(ethylene) glycol diacrylate (PEGDA)-chitosan-nanohydroxyapatite scaffolds: Structural characterization and cellular response.

Int J Biol Macromol

January 2025

Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia. Electronic address:

Polymer-based scaffolds with bioactive materials offer great potential in bone tissue engineering. Polyethylene glycol diacrylate (PEGDA) scaffolds fabricated via liquid crystal display 3D printing technique lack inherent osteoconductivity. To improve such properties, chitosan of 10 and 20 wt% and nanohydroxyapatite (nHA) (3-10 wt%) were incorporated into PEGDA scaffolds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!