Colicin D import into Escherichia coli requires an interaction via its TonB box with the energy transducer TonB. Colicin D cytotoxicity is inhibited by specific tonB mutations, but it is restored by suppressor mutations in the TonB box. Here we report that there is a second site of interaction between TonB and colicin D, which is dependent upon a 45-amino acid region, within the uncharacterized central domain of colicin D. In addition, the 8th amino acids of colicin D (a glycine) and colicin B (a valine), adjacent to their TonB boxes, are also required for TonB recognition, suggesting that high affinity complex formation involves multiple interactions between these colicins and TonB. The central domain also contributes to the formation of the immunity complex, as well as being essential for uptake and thus killing. Colicin D is normally secreted in association with the immunity protein, and this complex involves the following two interactions: a major interaction with the C-terminal tRNase domain and a second interaction involving the central domain of colicin D and, most probably, the alpha4 helix of ImmD, which is on the opposite side of ImmD compared with the major interface. In contrast, formation of the immunity complex with the processed cytotoxic domain, the form expected to be found in the cytoplasm after colicin D uptake, requires only the major interaction. Klebicin D has, like colicin D, a ribonuclease activity toward tRNAArg and a central domain, which can form a complex with ImmD but which does not function in TonB-mediated transport.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M706846200DOI Listing

Publication Analysis

Top Keywords

central domain
20
domain colicin
12
colicin
11
tonb
8
interaction tonb
8
tonb box
8
tonb colicin
8
formation immunity
8
immunity complex
8
major interaction
8

Similar Publications

Background: Risk factors and mechanisms of cognitive impairment (CI) after aneurysmal subarachnoid hemorrhage (aSAH) are unclear. This study used a neuropsychological battery, MRI, ERP and CSF and plasma biomarkers to predict long-term cognitive impairment after aSAH.

Materials And Methods: 214 patients hospitalized with aSAH (n = 125) or unruptured intracranial aneurysms (UIA) (n = 89) were included in this prospective cohort study.

View Article and Find Full Text PDF

Liposomes-Loaded miR-9-5p Alleviated Hypoxia-Ischemia-Induced Mitochondrial Oxidative Stress by Targeting ZBTB20 to Inhibiting Nrf2/Keap1 Interaction in Neonatal Mice.

Antioxid Redox Signal

January 2025

Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.

Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Overexpression of miR-9-5p in HI mice or HO-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1.

View Article and Find Full Text PDF

Rationale: Osteoporosis is an abnormal reduction in bone mass and bone deterioration, leading to increased fracture risk. Alendronate belongs to the bisphosphonate class of drugs, which inhibit bone resorption by interfering with the activity of osteoclasts (bone cells that break down bone tissue). This is an update of a Cochrane review first published in 2008.

View Article and Find Full Text PDF

As natural furocoumarins, psoralen and its isomer isopsoralen are widely distributed in various fruits including L., vegetables including celery, and medicinal herbs including L. Although psoralen and isopsoralen have been used as dietary supplements because of their bioactivities such as antibacterial and anti-inflammatory properties; however, the potential mechanisms underlying the antioxidant activities of these two furocoumarins still need to be explored.

View Article and Find Full Text PDF

FXYD6 is transcriptionally activated by KLF10 to suppress the aggressiveness of gastric cancer cells.

Cytotechnology

April 2025

The First College of Clinical Medical Science, Yichang Central People's Hospital, China Three Gorges University, Yichang, 443000 China.

Despite improvements in therapeutic approaches, the mortality rate of gastric cancer (GC) remains unacceptably high. Evidence suggests that FXYD domain containing ion transport regulator 6 (FXYD6) is downregulated in GC. However, its exact function and the molecular mechanism in GC are still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!