Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Folate deficiency is a global health problem affecting many people in the developing and developed world. Current interventions (industrial food fortification and supplementation by folic acid pills) are effective if they can be used but might not be possible in less developed countries. Recent advances demonstrate that folate biofortification of food crops is now a feasible complementary strategy to fight folate deficiency worldwide. The genes and enzymes of folate synthesis are sufficiently understood to enable metabolic engineering of the pathway, and results from pilot engineering studies in plants (and bacteria) are encouraging. Here, we review the current status of investigations in the field of folate enhancement on the eve of a new era in food fortification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tplants.2007.11.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!