The present study investigated the effects of submaximal sustained and maximal repetitive contractions on the compliance of human vastus lateralis (VL) tendon and aponeurosis in vivo using two different fatiguing protocols. Twelve male subjects performed three maximum voluntary isometric contractions (MVC) of the knee extensors before and after two fatiguing protocols on a dynamometer. The first fatiguing protocol consisted of a long-lasting sustained isometric knee extension contraction at 25% MVC until failure (inability to hold the defined load). The second fatiguing protocol included long-lasting isokinetic (90 degrees/s) knee extension contractions, where maximum moment was exerted and failure was proclaimed when this value fell below 70% of unfatigued maximum isokinetic moment. Ultrasonography was used to determine the elongation and strain of the VL tendon and aponeurosis. Muscle fatigue was indicated by a significant decrease in maximum resultant knee extension moment (p<0.05) observed during the MVCs after both long-lasting contractions. No significant (p>0.05) differences in elongation and strain of the VL tendon and aponeurosis were found, when compared every 300 N (tendon force) before and after the fatiguing protocols. The present data indicate, that the VL tendon and aponeurosis in vivo do not suffer from changes in the compliance neither after long-lasting static mechanical loading (strain approximately 3.2%) nor after long-lasting cyclic mechanical loading (strain 6.2-5.5%).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jelekin.2007.10.008 | DOI Listing |
Radiol Med
January 2025
Neuromuscular Imaging Ordinationszentrum Döbling, Heiligenstädter Straße 46-48, 1190, Vienna, Austria.
Purpose: Thread release of the carpal tunnel is the most recent of several minimally invasive ultrasound-guided carpal tunnel release techniques. The purpose of this article is to provide a step-by-step guide for minimally invasive, ultrasound-guided thread release of the carpal tunnel focused on transecting the transverse carpal ligament with minimal damage to the palmar aponeurosis on anatomical specimens.
Methods: Fifteen ultrasound-guided carpal tunnel thread releases were performed on the wrists of soft-embalmed anatomical specimens, which were dissected immediately after the intervention.
J Shoulder Elbow Surg
January 2025
Department of Clinical Anatomy, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan.
Background: Biomechanical studies suggest that the triceps brachii muscle generates resistive force against valgus stress on the elbow during baseball pitching. However, given the parallel fiber orientation in the distal tendinous structure of the triceps brachii, the mechanism behind this anti-valgus force remains unclear. In the present study, we aimed to examine the anatomy of the distal tendinous structure of the triceps brachii using bony morphological, macroscopic, and histological methods.
View Article and Find Full Text PDFCureus
December 2024
Department of Science of Physical Functions, Division of Oral Medicine, Kyushu Dental University, Kitakyushu, JPN.
Objective Masticatory muscle tendon-aponeurosis hyperplasia (MMTAH) is a recently identified condition characterized by restricted mouth opening due to hyperplasia of the temporalis muscle tendon and masseter muscle aponeurosis. This study examines the treatment and clinical course of patients with MMTAH who underwent surgery at our hospital. Subjects and methods The study included 14 patients (four males and 10 females; mean age: 33.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
School of Engineering, University of Guelph, Guelph, Ontario, Canada. Electronic address:
As a biarticular muscle, the biceps brachii both supinates the forearm and flexes the elbow and shoulder, thus allowing the upper limb to perform a variety of activities of daily living (ADL). The biceps brachii originates on the coracoid apex as well as the supraglenoid tubercle and inserts on the radial tuberosity. At the distal end, the bicipital aponeurosis (BA) provides a transition of the biceps tendon into the antebrachial fascia.
View Article and Find Full Text PDFSports Med Open
December 2024
School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, 115 Victoria Parade, Fitzroy, VIC, 3065, Australia.
The aponeurosis is a large fibrous connective tissue structure within and surrounding skeletal muscle and is a critical component of the muscle-tendon unit (MTU). Due to the lack of consensus on terminology and the heterogeneous nature of the aponeurosis between MTUs, there are several questions that remain unanswered. For example, the aponeurosis is often conflated with the free tendon rather than being considered an independent structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!