The aim of the present paper was to optimise the conditions of aerobic treatment of olive mill wastewater. To do so, the waste was treated following the experimental optimal design methodology studying the set of factors susceptible to influence the treatment (pH, C/N ratio, aeration and temperature). The results of a first series of experiments showed a strong correlation between the reduction in the levels of polyphenols and three of the parameters studied, i.e. the C/N ratio, aeration and temperature. Optimised conditions led to a 94% drop in polyphenols. Then, for a finer study of the conditions, just two parameters were varied, the pH and the C/N ratio. The results showed that the conditions of pH modification (addition of lime or sodium hydroxide) and the C/N ratio (urea or ammonium nitrate) allowed the microbiological activity to be very significantly improved. This led to polyphenol reductions of 51% and 76%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2007.11.005 | DOI Listing |
BMC Plant Biol
January 2025
Institute of Grassland Science, School of Life Sciences, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China.
The intricate biogeochemical cycling of multiple elements plays a pivotal role in upholding a myriad of ecosystem functions. However, our understanding of elemental stoichiometry and coupling in response to global changes remains primarily limited to plant carbon: nitrogen: phosphorus (C: N: P). Here, we assessed the responses of 11 elements in plants from different functional groups to global changes.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China. Electronic address:
Competition is ubiquitous and an important driver of tree mortality. Non-structural carbohydrates (NSCs, including soluble sugars and starch) and C-N-P stoichiometries are affected by the competitive status of trees and, in turn, physiologically determine tree growth and survival in competition. However, the physiological mechanisms behind tree mortality caused by intraspecific competition remain unclear.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Central South University, Changsha 410075, China.
Geopolymer, as a promising inorganic binding material, holds potential for use in constructing base layers for highway pavements. This study aims to evaluate the mechanical properties of geopolymer-stabilized macadam (GSM) at both the micro- and macro-scale by a series of tests, demonstrating that high-Ca GSM is a high-quality material for pavement base layers. The results demonstrated that GSM exhibits outstanding mechanical and fatigue properties, significantly surpassing those of cement-stabilized macadam (CSM).
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan.
Aquaculture, a vital industry supplying a significant portion of the world's seafood, faces challenges such as the deterioration of the aquaculture environment. The objective of this study was to isolate and identify microorganisms with the capacity to eliminate nitrite in water from shrimp ponds and evaluate their potential as probiotics to improve water quality. Additionally, the study also determines the ideal conditions for the probiotic to effectively reduce nitrite-N and ammonia-N.
View Article and Find Full Text PDFSci China Life Sci
January 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
Increasing carbon (C) sequestration and stability in agricultural soils is a key strategy to mitigate climate change towards C neutrality. Crop diversification is an initiative to increase C sequestration in fields, but it is unclear how legume-based crop diversification impacts the functional components of soil organic carbon (SOC) in dryland, including the formation and transformation of particulate organic carbon (POC) and mineral-associated organic carbon (MAOC). We investigated the decomposition of straw residues, the fate of photosynthesized C, as well as the formation of MAOC and POC fractions using an in situC labeling technique in the soybean-wheat intercropping, soybean-maize intercropping and their respective monocropping systems, with and without cover crops.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!