Challenges in reformulating pressurized metered-dose inhalers (pMDIs) with hydrofluoroalkane (HFA) propellants, and the potential of inhalation formulations for the delivery of drugs to and through the lungs have encouraged the development of novel suspension-based pMDI formulations. In this work we propose a new methodology for engineering polar drug particles with enhanced stability and aerosol characteristics in propellant HFAs. The approach consists in 'trapping' HFA-philic moieties at the surface of particles, which are formed using a modified emulsification-diffusion method. The trapped moieties act as stabilizing agents, thus preventing flocculation of the otherwise unstable colloidal drug particles. This approach has advantages compared to surfactant-stabilized colloids in that no free stabilizers remain in solution (reduced toxicity), and the challenges associated with the synthesis of well-balanced amphiphiles are circumvented. The methodology was tested by trapping polyethylene glycol (PEG) at the surface of particles of a model polar drug-salbutamol sulfate. Colloidal probe microscopy is used to quantitatively demonstrate the trapping of the HFA-phile at the surface, and the ability of PEG in screening particle-particle cohesive interactions. Both physical stability and the corresponding aerosol characteristics are significantly improved compared to those of a commercial formulation. The fine particle fraction of PEG-coated salbutamol sulfate was observed to be 42% higher than that of Ventolin HFA. The formation of stable dispersions of terbutaline hemisulfate using the same approach, suggests this to be a generally applicable methodology to polar drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2007.10.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!