Neuronal activity regulated pentraxin (Narp) is a secreted, synaptic protein that has been implicated in modulating synaptic transmission. However, it is unclear how Narp secretion is regulated. Since we noted prominent Narp immunostaining in vasopressin neurons of the hypothalamus and in the posterior pituitary, we assessed whether it, like vasopressin, is released into the systemic circulation in an activity-dependent fashion. Consistent with this hypothesis, electron microscopic studies of the posterior pituitary demonstrated that Narp is located in secretory vesicles containing vasopressin. Using affinity chromatography, we detected Narp in plasma and found that these levels are markedly decreased by hypophysectomy. In addition, we confirmed that injection of a viral Narp construct into the hypothalamus restores plasma Narp levels in Narp knockout mice. In checking for activity-dependent secretion of Narp from the posterior pituitary, we found that several stimuli known to trigger vasopressin release, i.e. hypovolemia, dehydration and endotoxin, elevate plasma Narp levels. Taken together, these findings provide compelling evidence that Narp is secreted from vasopressin neurons in an activity-dependent fashion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2342909PMC
http://dx.doi.org/10.1016/j.neuroscience.2007.10.040DOI Listing

Publication Analysis

Top Keywords

vasopressin neurons
12
posterior pituitary
12
narp
11
activity-dependent secretion
8
neuronal activity
8
activity regulated
8
regulated pentraxin
8
systemic circulation
8
narp secreted
8
activity-dependent fashion
8

Similar Publications

Vasopressin (AVP), a nonapeptide synthesized predominantly by magnocellular hypothalamic neurons, is conveyed to the posterior pituitary the pituitary stalk, where AVP is secreted into the circulation. Known to regulate blood pressure and water homeostasis, it also modulates diverse social behaviors, such as pair-bonding, social recognition and cognition in mammals including humans. Importantly, AVP modulates social behaviors in a gender-specific manner, perhaps, due to gender differences in the distribution in the brain of AVP and its main receptor AVPR1a.

View Article and Find Full Text PDF

Hormonal mechanisms in the paraventricular nuclei associated with hyperalgesia in Parkinson's disease model rats.

Biochem Biophys Res Commun

December 2024

Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan. Electronic address:

Pain is a major non-motor symptom of Parkinson's disease (PD). The relationship between hyperalgesia and neuropeptides originating from paraventricular nucleus (PVN) in 6-hydroxydopamine (6-OHDA) rats has already been investigated for oxytocin (OXT), but not yet for arginine vasopressin (AVP) and corticotropin-releasing hormone (CRH). The present study aimed to investigate the alterations in these neuropeptides following nociceptive stimulation in PD model rats and to examine the mechanisms of hyperalgesia.

View Article and Find Full Text PDF

The transcription factor MYT1L supports proper neuronal differentiation and maturation during brain development. MYT1L haploinsufficiency results in a neurodevelopmental disorder characterized by intellectual disability, developmental delay, autism, behavioral disruptions, aggression, obesity and epilepsy. While MYT1L is expressed throughout the brain, how it supports proper neuronal function in distinct regions has not been assessed.

View Article and Find Full Text PDF

Effects of Arginine Vasopressin on Hippocampal Myelination in an Autism Rat Model: A RNA-seq and Mendelian Randomization Analysis.

Front Biosci (Landmark Ed)

November 2024

State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550004 Guiyang, Guizhou, China.

Background: To explore the therapeutic role of arginine vasopressin (AVP) and its possible mechanisms in autism.

Methods: Mid-trimester pregnant rats treated with valproate on embryonic day 12.5 and their offspring were selected as autism model.

View Article and Find Full Text PDF

Central diabetes insipidus is a clinical syndrome caused by the loss of function of vasopressinergic neurons in the hypothalamus, which results in impaired secretion of arginine vasopressin (AVP). AVP deficiency leads to the inability to concentrate urine, resulting in hypotonic polyuria and polydipsia. The condition is most often acquired, but in some cases, the etiology remains unknown, in which the disease is classified as idiopathic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!