A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanical properties of single electrospun collagen type I fibers. | LitMetric

Mechanical properties of single electrospun collagen type I fibers.

Biomaterials

Polymer Chemistry and Biomaterials, Faculty of Science and Technology and Institute for Biomedical Technology (BMTI), University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.

Published: March 2008

The mechanical properties of single electrospun collagen fibers were investigated using scanning mode bending tests performed with an AFM. Electrospun collagen fibers with diameters ranging from 100 to 600 nm were successfully produced by electrospinning of an 8% w/v solution of acid soluble collagen in 1,1,1,3,3,3-hexafluoro-2-propanol (HFP). Circular dichroism (CD) spectroscopy showed that 45% of the triple helical structure of collagen molecules was denatured in the electrospun fibers. The electrospun fibers were water soluble and became insoluble after cross-linking with glutaraldehyde vapor for 24h. The bending moduli and shear moduli of both non- and cross-linked single electrospun collagen fibers were determined by scanning mode bending tests after depositing the fibers on glass substrates containing micro-channels. The bending moduli of the electrospun fibers ranged from 1.3 to 7.8 GPa at ambient conditions and ranged from 0.07 to 0.26 MPa when immersed in PBS buffer. As the diameter of the fibrils increased, a decrease in bending modulus was measured clearly indicating mechanical anisotropy of the fiber. Cross-linking of the electrospun fibers with glutaraldehyde vapor increased the shear modulus of the fiber from approximately 30 to approximately 50 MPa at ambient conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2007.10.058DOI Listing

Publication Analysis

Top Keywords

electrospun collagen
16
electrospun fibers
16
single electrospun
12
collagen fibers
12
fibers
9
mechanical properties
8
properties single
8
electrospun
8
scanning mode
8
mode bending
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!