A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enrichment of anaerobic benzene-degrading microorganisms by in situ microcosms. | LitMetric

Microcosms filled with different solids (sand, lava, Amberlite XAD-7) were exposed for 67 days in the sulfidic part of a groundwater monitoring well downstream of the source zone of a benzene-contaminated aquifer and subsequently incubated in the laboratory. Benzene was repeatedly degraded in several microcosms accompanied by production of sulfide, leading to stable benzene-degrading enrichment cultures. In control microcosms without filling material, benzene was initially degraded, but the benzene-degrading capacity could not be sustained. The results indicate that long-term physiologically active benzene-degrading microorganisms were attached to surfaces of the solids. The biodiversity and attachment behavior of microorganisms in the in situ microcosms was assessed by confocal laser scanning microscopy and single-strand conformation polymorphism (SSCP) analysis, followed by sequencing of dominant SSCP bands. The microbial community was composed of several different Bacteria, representing members of Clostridia, Bacteroidales, all subgroups of the Proteobacteria, Verrucomicrobia, Nitrospira, Chloroflexi and Chlorobi. Only a few archaeal sequences could be retrieved from the communities. The majority of phylotypes were affiliated to bacterial groups with a possible functional relationship to the bacterial sulfur cycle, thus indicating that the microbial community in the investigated aquifer zone depends mainly on inorganic sulfur compounds as electron donors or acceptors, a finding that corresponds to the geochemical data.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6941.2007.00401.xDOI Listing

Publication Analysis

Top Keywords

benzene-degrading microorganisms
8
microorganisms situ
8
situ microcosms
8
microbial community
8
microcosms
5
enrichment anaerobic
4
benzene-degrading
4
anaerobic benzene-degrading
4
microcosms microcosms
4
microcosms filled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!