In order to determine the impact of immobilization on biocatalytic efficacy of sulfide oxidase, the kinetic and thermodynamic properties of native and DEAE-cellulose immobilized sulfide oxidase from Arthrobacter species FR-3 were evaluated. Immobilization increased the catalytic efficiency of sulfide oxidase by producing a lower Michaelis-Menten constant (Km) and a higher rate of catalysis (Vmax) at different temperatures. The first-order kinetic analysis of thermal denaturation demonstrated that the values of enthalpy (delta H*d) and entropy (delta S*d) of immobilized sulfide oxidase were lower than the native enzyme, confirming the thermal stabilization of sulfide oxidase by immobilization. The delta H*d and delta S*d of the immobilized enzyme at 35 degrees C were 138.07 kJ/mol and 122.04 J/K/mol, respectively. These results suggest that immobilization made the sulfide oxidase from Arthrobacter sp. FR-3 thermodynamically more efficient for catalysis of sulfide oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10826060701774361DOI Listing

Publication Analysis

Top Keywords

sulfide oxidase
28
oxidase arthrobacter
12
kinetic thermodynamic
8
sulfide
8
arthrobacter species
8
immobilized sulfide
8
delta h*d
8
delta s*d
8
s*d immobilized
8
oxidase
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!