The work that is reported here concerns a method that allows the simultaneous determination of cadmium (II) and zinc (II) in aqueous solution by molecular fluorescence spectroscopy using 9-(1',4',7',10',13'-pentaazacyclopentadecyl)-methylanthracene. For this chemosensor, the fluorophore pi-system is insulated from an azacrown donor by one methylene group. A self-quenching mechanism, resulting from an electron transfer from the nitrogens of the azacrown to the excited aromatic system, essentially precludes fluorescence emission. Fluorescence is restored when cadmium (II) or zinc (II) are chelated by the macrocycle. The difference between the emission spectra profiles of the free chemosensor, the cadmium and the zinc chelates is such that the concentration determination of the two metals and the remaining free chemosensor is possible at the nanomolar scale in only one experiment using a multiple linear regression algorithm. Usefulness and convenience of this simple method is proven by steady state and kinetic quantitative determination experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-007-0291-0DOI Listing

Publication Analysis

Top Keywords

cadmium zinc
16
simultaneous determination
8
determination cadmium
8
molecular fluorescence
8
fluorescence spectroscopy
8
multiple linear
8
linear regression
8
free chemosensor
8
cadmium
4
zinc
4

Similar Publications

The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (, by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness.

View Article and Find Full Text PDF

Luminescent chiral metal-organic frameworks (CMOFs) are promising candidates for the enantioselective sensing of important chiral molecules. Herein, we report the synthesis and characterization of Zn and Cd CMOFs based on 1,1'-bi-2-naphthol (BINOL)-derived 3,3',6,6'-tetra(benzoic acids), H-OEt and H-OH. Four CMOFs, -OEt, -OH, -OEt, and -OH, based on these ligands were crystallographically characterized.

View Article and Find Full Text PDF

Hidden Threat in Turbid Waters: Quantifying and Modeling the Bioaccumulation and Risks of Particulate Metals to Clams.

Environ Pollut

January 2025

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, State Key Lab of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China. Electronic address:

A major proportion of metal contaminants in aquatic environments is bound to suspended particulate matter (SPM), yet environmental monitoring typically focuses on dissolved metals, with the filtration step removing SPM. This step may inadvertently hide the potential risks posed by particulate metals. In this study, we used stable isotope tracers to quantify the contributions of SPM-bound metals to the bioaccumulation of nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in Ruditapes philippinarum, a widely distributed clam crucial to global aquaculture.

View Article and Find Full Text PDF

Prenatal metal(loid) exposure and preterm birth: a systematic review of the epidemiologic evidence.

J Expo Sci Environ Epidemiol

January 2025

Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Background: Preterm birth (PTB) is a common pregnancy complication associated with significant neonatal morbidity. Prenatal exposure to environmental chemicals, including toxic and/or essential metal(loid)s, may contribute to PTB risk.

Objective: We aimed to summarize the epidemiologic evidence of the associations among levels of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), lead (Pb), and zinc (Zn) assessed during the prenatal period and PTB or gestational age at delivery; to assess the quality of the literature and strength of evidence for an effect for each metal; and to provide recommendations for future research.

View Article and Find Full Text PDF

Increased application of organic fertilizer is an effective measure to improve greenhouse soil quality. However, prolonged and intensive application of organic manure has caused nutrient and certain heavy metal accumulation in greenhouse soil. Therefore, the optimal quantity of organic manure required to sustain soil fertility while mitigating the accumulation of heavy metals and other nutrients resulting from continuous application remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!