Using electronic phase detection, we study the dynamics that govern pulse retiming in an actively mode-locked fiber laser. We compare the dynamics for amplitude and for phase modulation and identify the characteristic time constants for each case. The retiming dynamics for amplitude modulation are revealed as a first-order exponential decay, whereas for phase modulation the dynamics are those of a damped harmonic oscillator. We show that the measured time constants agree with predictions given by the soliton perturbation theory.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.24.001687DOI Listing

Publication Analysis

Top Keywords

actively mode-locked
8
mode-locked fiber
8
dynamics amplitude
8
phase modulation
8
time constants
8
dynamics
5
timing restoration
4
restoration dynamics
4
dynamics actively
4
fiber ring
4

Similar Publications

An approach for generating phase-coded coherent microwave pulse trains at high frequencies is proposed and demonstrated based on an actively mode-locked optoelectronic parametric oscillator (AML-OEPO), where an electrical mixer is inserted into the cavity of an optoelectronic oscillator (OEO) to achieve both mode locking and parameter oscillation. The driving signal applied to the mixer is a low-frequency sinusoidal signal with voltage polarity coding, where the frequency is the same as the free spectral range (FSR) of the OEO cavity, and the duration of each voltage polarity coding bit is identical to the loop delay. As a result, phase-coded coherent microwave pulse trains can be generated, where the pulse interval is equal to the loop delay due to the active mode locking effect, and the phase coding period is equal to a multiple integer of the loop delay due to parameter oscillation.

View Article and Find Full Text PDF

In research and engineering, short laser pulses are fundamental for metrology and communication. The generation of pulses by passive mode-locking is especially desirable due to the compact setup dimensions, without the need for active modulation requiring dedicated external circuitry. However, well-established models do not cover regular self-pulsing in gain media that recover faster than the cavity round trip time.

View Article and Find Full Text PDF

We investigate the terahertz (THz) nonlinear absorption characteristics in a thin AlO crystal using nonlinear THz spectroscopy. A THz saturable absorption performance with a high modulation depth (27.5%) and a relatively low saturable intensity (6.

View Article and Find Full Text PDF

Stabilized 30 µJ dissipative soliton resonance laser source at 1064 nm.

Sci Rep

November 2024

Laser Spectroscopy Group, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland.

We demonstrate the first successful stabilization of a dissipative soliton resonance (DSR) mode-locked (ML) laser source using straightforward techniques. Our setup employed a figure-8 (F8) resonator configuration and a nonlinear optical loop mirror (NOLM) to achieve stable mode-locking, generating 1064 nm rectangular pulses with a 3 ns duration at a repetition frequency of ~ 1 MHz. The pulses were boosted in an all-fiber amplifier chain and reached 30 µJ and 10 kW peak power per pulse at 30 W average output power.

View Article and Find Full Text PDF

A novel, to our knowledge, approach for generating optical pulses with programmable positions in an actively mode-locked (AML) optical cavity is proposed and experimentally demonstrated. In the AML, active mode locking occurs when the cavity gain exceeds one, and the cavity round trip time equals integer multiples of the repetition period of the electrical driving signal. The generated optical pulses are present at the positions where the optical cavity operates at its maximum transmission points.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!