Small molecule tyrosine kinase inhibitors, such as imatinib, are effective therapies for BCR-ABL-mediated human leukemias. However, clinical drug resistance occurs, which warrants development of alternative and/or complementary therapeutic strategies to target critical downstream signaling molecules. We recently demonstrated that disrupting 14-3-3/ligand association by a peptide-based 14-3-3 competitive antagonist R18 induces significant apoptosis, partially through reactivation of AKT-inhibited proapoptotic FOXO3a, in FGFR1 fusion-transformed hematopoietic cells. Here, we report that targeting 14-3-3 by R18 effectively induced significant apoptosis in Ba/F3 and K562 cells expressing BCR-ABL, similarly through liberation and reactivation of FOXO3a. Moreover, R18 sensitized BCR-ABL-transformed cells to inhibition with MEK1 inhibitor U0126, Bcl-2 inhibitor GX15-070, or mTOR inhibitor rapamycin. Treatment with these reagents potentiated R18-induced reactivation of proapoptotic FOXO3a with enhanced expression of downstream transcription targets p27(kip1) and Bim1. Furthermore, R18-induced apoptotic cell death in cells expressing diverse imatinib-resistant BCR-ABL mutants, including T315I. This inhibition was enhanced by R18 in combination with U0126 and rapamycin. Thus, our findings suggest that targeting 14-3-3 may potentiate the effects of conventional therapy for BCR-ABL-associated hematopoietic malignancies, and overcome drug resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2396184PMC
http://dx.doi.org/10.1038/sj.leu.2405064DOI Listing

Publication Analysis

Top Keywords

targeting 14-3-3
12
u0126 rapamycin
8
bcl-2 inhibitor
8
inhibitor gx15-070
8
drug resistance
8
proapoptotic foxo3a
8
cells expressing
8
14-3-3 sensitizes
4
sensitizes native
4
native mutant
4

Similar Publications

Background: Enolase 1 (ENO1) is a conserved glycolytic enzyme that regulates glycolysis metabolism. However, its role beyond glycolysis in the pathophysiology of multiple myeloma (MM) remains largely elusive. Herein, this study aimed to elucidate the function of ENO1 in MM, particularly its impact on mitophagy under bortezomib-induced apoptosis.

View Article and Find Full Text PDF

The link of FOXO1 and FOXO4 transcription factors to development of the lens.

Dev Dyn

January 2025

Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

Background: The FOXOs regulate the transcription of many genes, including ones directly linked to pathways required for lens development. However, this transcription factor family has rarely been studied in the context of development, including the development of the lens. FOXO expression, regulation, and function during lens development remained unexplored.

View Article and Find Full Text PDF

YAP K236 acetylation facilitates its nucleic export and deprived the protection against cardiac hypertrophy in mice.

Pharmacol Res

January 2025

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China. Electronic address:

The subcellular localization of Yes-associated protein (YAP) is dynamically regulated by post-transcriptional modifications, critically influencing cardiac function. Despite its significance, the precise mechanism controlling YAP nuclear sequestration and its role in cardiac hypertrophy remain poorly defined. In this study, utilizing immunoprecipitation-mass spectrometry, we identified potential acetylation sites and interacting proteins of YAP.

View Article and Find Full Text PDF

Background: YWHAB (14-3-3 Beta) was found in the secretome of miR-526b and miR-655 overexpressed breast cancer (BRCA) cell lines. The potential of YWHAB as a therapeutic target or biomarker for BRCA is investigated here.

Methods: After YWHAB was knocked down with siRNA, BRCA cell lines were used for in vitro assays (proliferation, migration, epithelial-to-mesenchymal transition).

View Article and Find Full Text PDF

Objective: Inositols play significant roles in biological systems. Myo-inositol (MI), the most prevalent isomer, functions as an osmolyte and mediates cell signal transduction. Other notable isomers include Scyllo-inositol (SCI) and D-Chiro-inositol (DCHI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!