Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection.

Nat Protoc

Department of Genetics, Cell Biology and Development, Beckman Center for Transposon Research, Institute of Human Genetics, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota 55455, USA.

Published: February 2008

Nonviral, DNA-mediated gene transfer is an alternative to viral delivery systems for expressing new genes in cells and tissues. The Sleeping Beauty (SB) transposon system combines the advantages of viruses and naked DNA molecules for gene therapy purposes; however, efficacious delivery of DNA molecules to animal tissues can still be problematic. Here we describe the hydrodynamic delivery procedure for the SB transposon system that allows efficient delivery to the liver in the mouse. The procedure involves rapid, high-pressure injection of a DNA solution into the tail vein. The overall procedure takes <1 h although the delivery into one mouse requires only a few seconds. Successful injections result in expression of the transgene in 5-40% of hepatocytes 1 d after injection. Several weeks after injection, transgene expression stabilizes at approximately 1% of the level at 24 h, presumably owing to integration of the transposons into chromosomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2548418PMC
http://dx.doi.org/10.1038/nprot.2007.471DOI Listing

Publication Analysis

Top Keywords

transposon system
12
sleeping beauty
8
beauty transposon
8
dna molecules
8
preferential delivery
4
delivery sleeping
4
system livers
4
livers mice
4
mice hydrodynamic
4
hydrodynamic injection
4

Similar Publications

Structural maintenance of chromosomes (SMC) are ubiquitously distributed proteins involved in chromosome organization. Deletion of causes severe growth phenotypes in many organisms. Surprisingly, can be deleted in , a member of the phylum, without any apparent growth phenotype.

View Article and Find Full Text PDF

Background: Wastewater systems are usually considered antibiotic resistance hubs connecting human society and the natural environment. Antibiotic usage can increase the abundance of both ARGs (antibiotic resistance genes) and MGEs (mobile gene elements). Understanding the transcriptomic profiles of ARGs and MGEs remains a major research goal.

View Article and Find Full Text PDF

Identification of a novel TOP2B::AFF2 fusion gene in B-cell acute lymphoblastic leukemia.

Sci Rep

January 2025

Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China.

Genetic alterations play a pivotal role in leukemic clonal transformation, significantly influencing disease pathogenesis and clinical outcomes. Here, we report a novel fusion gene and investigate its pathogenic role in acute lymphoblastic leukemia (ALL). We engineer a transposon transfection system expressing the TOP2B::AFF2 transcript and introduce it into Ba/F3 cells.

View Article and Find Full Text PDF

Summary: Gene and genome duplications are major evolutionary forces that shape the diversity and complexity of life. However, different duplication modes have distinct impacts on gene function, expression, and regulation. Existing tools for identifying and classifying duplicated genes are either outdated or not user-friendly.

View Article and Find Full Text PDF

The Difference a Year Can Make: How Antibiotic Resistance Mechanisms in Have Changed in Northwestern Transylvania.

Biomolecules

December 2024

Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania.

This study examines the prevalence and the mechanisms of antibiotic resistance in isolates collected from healthcare units in Northwestern Transylvania, Romania, between 2022 and 2023. Given the alarming rise in antibiotic resistance, the study screened 34 isolates for resistance to 10 antibiotics, 46 ARGs, and integrase genes using PCR analysis. The results reveal a concerning increase in multidrug-resistant (MDR) and extensively drug-resistant (XDR) isolates over the two-year period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!