Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The microarchitecture of collagen fibrils in the articular disc of the temporomandibular joint (TMJ) plays an important role in dissipating the mechanical load during jaw movement. However, little information is available on its adaptations to the biomechanical environment during development. To address this issue, we analyzed the diameter of collagen fibrils of the articular disc of the rat TMJ with quantitative ultrastructural analysis during postnatal development. The mean diameter of the collagen fibrils significantly increased and the arrangement of the collagen fiber networks became compact during development. Articular discs of suckling rat pups were composed of thin, uniformly sized collagen fibrils (range: 30-60 nm, peak: 40-50 nm). At the age of 4 weeks, thicker collagen fibrils began to appear in articular discs, shortly after weaning (range: 20-70 nm, peak: 40-50 nm). In articular discs of adult rats, collagen fibrils varied widely in diameter, with thick fibrils predominating (range: 10-120 nm, peak: 40-70 nm). These age-related changes in the microarchitecture of collagen fibrils in articular discs may reflect changes in their biomechanical environment during development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1679/aohc.70.175 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!