Retinal glial (Müller) cells are proposed to mediate retinal potassium homeostasis predominantly by potassium transport through inwardly rectifying K(+) (Kir) channels. Retinal gliosis is often associated with a decrease in glial potassium conductance. To determine whether this decrease is caused by a downregulation of glial Kir channels, we investigated a rabbit model of proliferative vitreoretinopathy (PVR) which is known to be associated with proliferative gliosis. The membrane conductance of control Müller cells is characterized by large Kir currents whereas Müller cells of PVR retinas displayed an almost total absence of Kir currents. In control tissues, Kir2.1 immunoreactivity is localized in the inner stem processes and endfeet of Müller cells whereas Kir4.1 immunoreactivity is largely confined to the Müller cell endfeet. In PVR retinas, there is a mislocation of Kir channel proteins, with Kir4.1 immunoreactivity detectable in Müller cell fibers throughout the whole retina, and a decrease of immunoreactivity in the cellular endfeet. Real-time PCR analysis revealed no alteration of the Kir4.1 mRNA levels in PVR retinas as compared to the controls but a slight decrease in Kir2.1 mRNA. Western blotting showed no difference in the Kir4.1 protein content between control and PVR retinas. The data suggest that proliferative gliosis in the retina is associated with a functional inactivation of glial Kir channels that is not caused by a downregulation of the channel proteins but is associated with their mislocation in the cell membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2007.11.002DOI Listing

Publication Analysis

Top Keywords

kir channels
16
müller cells
16
pvr retinas
16
proliferative gliosis
12
inwardly rectifying
8
rectifying kir
8
retinal glial
8
caused downregulation
8
glial kir
8
kir currents
8

Similar Publications

Inwardly rectifying potassium (Kir) channels regulate essential physiological processes in insects and have been identified as potential targets for developing new insecticides. Flonicamid has been reported to inhibit Kir channels, disrupting the functions of salivary glands and renal tubules. However, the precise molecular target of flonicamid remains debated.

View Article and Find Full Text PDF

Direct effects of antipsychotics on potassium channels.

Biochem Biophys Res Commun

January 2025

Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea. Electronic address:

Schizophrenia (SCZ) and bipolar disorder (BD) and are severe psychiatric conditions that contribute to disability and increased healthcare costs globally. Although first-, second-, and third-generation antipsychotics are available for treating BD and SCZ, most have various side effects unrelated to their unique functions. Many antipsychotics affect K channels (Kv, K, Kir, K, and other channels), which change the functions of various organs.

View Article and Find Full Text PDF

Roles of calcium in ameloblasts during tooth development: A scoping review.

J Taibah Univ Med Sci

February 2025

Department of Prosthodontics/Dental Material, Dr. Ziauddin Ahmad Dental College, Aligarh Muslim University, India.

Objectives: Calcium ions (Ca) play crucial role in tooth development, particularly in maintaining enamel density during amelogenesis. Ameloblasts require specific proteins such as amelogenin, ameloblastin, enamelin, kallikrein, and collagen for enamel growth. Recent research has highlighted the importance of calcium and fluoride ions, as well as the TRPM7, STIM, and SOCE pathways, in regulating various stages of enamel formation.

View Article and Find Full Text PDF

Potassium Current Signature of Neuronal/Glial Progenitors in Amniotic Fluid Stem Cells.

Cells

January 2025

Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.

Article Synopsis
  • Amniotic fluid contains stem cells (AF-SCs) that have potential uses in regenerative medicine for treating various injuries and diseases.
  • When exposed to basic Fibroblast Growth Factor (bFGF), AF-SCs show the ability to survive and migrate in a rat brain model, resembling characteristics of neuronal/glial progenitor cells.
  • The study employs electrophysiological techniques to identify specific potassium currents in AF-SCs and confirms that histamine can influence calcium dynamics and potassium current activation in these cells.
View Article and Find Full Text PDF

Inward rectifying potassium (Kir) channels play a critical role in maintaining the resting membrane potential and cellular homeostasis. The high-resolution crystal structure of homotetrameric KirBac1.1 in detergent micelles provides a snapshot of the closed state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!