RECQL1 and RECQL5 as well as BLM reportedly interact with TOP3alpha whose defect is lethal for the cell. Therefore in this study, we characterized recql5/recql1/blm triple mutants from DT40 cells to determine whether the triple mutants show a top3alpha disrupted cell-like phenotype. The triple mutants are viable. Moreover, both blm/recql1 and recql5/blm cells, and recql5/recql1/blm cells grew slightly slower than blm cells, that is, triple mutant cells grew almost the same rate as either of the double mutant cells. The blm cells showed sensitivity to methyl methanesulfonate (MMS) and ultraviolet light (UV), about a 10-fold increase in sister chromatid exchange (SCE), and about a 3-fold increase in damage-induced mitotic chiasma compared to wild-type cells. The triple mutants showed the same sensitivity to MMS or UV and the same frequency of damage-induced mitotic chiasma compared to those of blm cells, indicating that unlike BLM, RECQL1 and RECQL5 play a little role in the repair of or tolerance to DNA damages. However, recql5/blm cells showed higher frequency of SCE than blm cells, whereas the RECQL1 gene disruption had no effect on SCE in blm cells and even in recql5/blm cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2007.11.003 | DOI Listing |
Sci Rep
January 2025
Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.
View Article and Find Full Text PDFLab Anim Res
January 2025
Department of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nung Street, Taipei, Taiwan, ROC.
Background: Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine. Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of transplanted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
Cholangiocarcinoma (CCA) is an aggressive cancer originating from bile duct epithelial cells, with a high rate of recurrence following surgical resection. Recurrence is categorized as early linked to aggressive tumor biology than late recurrence. This study aimed to identify novel peptide mass fingerprints (PMFs) and potential biomarker panels in the serum of CCA patients with early and late recurrence using mass spectrometry.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
Invasive lung myofibroblasts are the main cause of tissue remodeling in idiopathic pulmonary fibrosis (IPF). A key mechanism contributing to this important feature is aberrant crosstalk between the abnormal/injured lung epithelium and pulmonary fibroblasts. Here, we demonstrate that lungs from patients with IPF and from mice with bleomycin (BLM)-induced pulmonary fibrosis (PF) are characterized by the induction of human epididymis protein 4 (HE4) overexpression in epithelial cells.
View Article and Find Full Text PDFFungal Syst Evol
December 2024
Programa de Pós-graduação em Botânica - DIPO 2, Instituto Nacional de Pesquisas da Amazônia - Inpa, Av. André Araújo 2936, 69067-375, Manaus, AM, Brazil.
Rhizomorphs are hair- or wire-like melanized structures with structural differentiation analogous to plant roots that help fungi spread over an area and find food resources. Some species of multiple groups of the and the produce different types of rhizomorphs. In the , the structures are largely found in , particularly in the , , and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!