The Na(+)/I(-) symporter (NIS) is a key plasma membrane protein that mediates active I(-) uptake in the thyroid, lactating breast, and other tissues with an electrogenic stoichiometry of 2 Na(+) per I(-). In the thyroid, NIS-mediated I(-) uptake is the first step in the biosynthesis of the iodine-containing thyroid hormones, which are essential early in life for proper CNS development. In the lactating breast, NIS mediates the translocation of I(-) to the milk, thus supplying this essential anion to the nursing newborn. Perchlorate (ClO(4)(-)) is a well known competitive inhibitor of NIS. Exposure to food and water contaminated with ClO(4)(-) is common in the U.S. population, and the public health impact of such exposure is currently being debated. To date, it is still uncertain whether ClO(4)(-) is a NIS blocker or a transported substrate of NIS. Here we show in vitro and in vivo that NIS actively transports ClO(4)(-), including ClO(4)(-) translocation to the milk. A simple mathematical fluxes model accurately predicts the effect of ClO(4)(-) transport on the rate and extent of I(-) accumulation. Strikingly, the Na(+)/ ClO(4)(-) transport stoichiometry is electroneutral, uncovering that NIS translocates different substrates with different stoichiometries. That NIS actively concentrates ClO(4)(-) in maternal milk suggests that exposure of newborns to high levels of ClO(4)(-) may pose a greater health risk than previously acknowledged because ClO(4)(-) would thus directly inhibit the newborns' thyroidal I(-) uptake.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2154417 | PMC |
http://dx.doi.org/10.1073/pnas.0707207104 | DOI Listing |
J Phys Chem C Nanomater Interfaces
January 2025
Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, N-1433 AS, Norway.
Hybrid molecular ferroelectrics with orientationally disordered mesophases offer significant promise as lead-free alternatives to traditional inorganic ferroelectrics owing to properties such as room temperature ferroelectricity, low-energy synthesis, malleability, and potential for multiaxial polarization. The ferroelectric molecular salt HdabcoClO is of particular interest due to its ultrafast ferroelectric room-temperature switching. However, so far, there is limited understanding of the nature of dynamical disorder arising in these compounds.
View Article and Find Full Text PDFSymmetry-breaking spin-state transitions in two of three isostructural salts of MnIII spin-crossover cations, [MnIII(3-OMe-5-NO2-sal2323)]+, with heavy anions are reported. The ReO4- salt undergoes two-step spin crossover which is coupled with a re-entrant symmetry-breaking structural phase transition between a high temperature phase (S = 2, C2/c), an intermediate ordered phase (S = 1/S = 2, P21/c), and a low temperature phase (S = 1, C2/c). The AsF6- complex undergoes an abrupt transition between a high temperature phase (S = 2, C2/c) and a low temperature ordered phase (S = 1/S = 2, P-1).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
Designing molecular receptors that bind anions in water is a significant challenge, and an even greater difficulty lies in using these receptors to remove anions from water without resorting to the hazardous liquid-liquid extraction approach. We here demonstrate an effective and synthetically simple strategy toward these goals by exploiting ion-pair assembly of macrocycles. Our anion binding ensemble consists of an octa-chloro tetra-urea macrocyclic anion receptor (ClTU), which forms water-dispersible aggregates, and a tetra-cationic fluorescent dye 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin (TMPyP4), which provides Coulombic stabilization and fluorescence reporting of anion binding in an ion-pair assembly.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China. Electronic address:
Electrochromic (EC) materials based on ion insertion/desertion mechanisms provide a possibility for energy storage. Solution-processable energy storage EC polyamides have great potential for use in smart displays and EC supercapacitors. A suitable monomer structure design is particularly important for enhancing the electrochemical properties of polyamides.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
Background: Scedosporium apiospermum is a multidrug-resistant filamentous fungus that causes localized and disseminated diseases. Our group has previously described that metalbased complexes containing copper(II) or silver(I) ions complexed with 1,10-phenanthroline-5,6- dione (phendione) inhibited the viability of S. apiospermum conidial cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!