The role of Pleistocene forest refugia and rivers in the evolutionary diversification of tropical biota has been the subject of considerable debate. A range-wide analysis of gorilla mitochondrial and nuclear variation was used to test the potential role of both refugia and rivers in shaping genetic diversity in current populations. Results reveal strong patterns of regional differentiation that are consistent with refugial hypotheses for central Africa. Four major mitochondrial haplogroups are evident with the greatest divergence between eastern (A, B) and western (C, D) gorillas. Coalescent simulations reject a model of recent east-west separation during the last glacial maximum but are consistent with a divergence time within the Pleistocene. Microsatellite data also support a similar regional pattern of population genetic structure. Signatures of demographic expansion were detected in eastern lowland (B) and Gabon/Congo (D3) mitochondrial haplogroups and are consistent with a history of postglacial expansion from formerly isolated refugia. Although most mitochondrial haplogroups are regionally defined, limited admixture is evident between neighboring haplogroups. Mantel tests reveal a significant isolation-by-distance effect among western lowland gorilla populations. However, mitochondrial genetic distances also correlate with the distance required to circumnavigate intervening rivers, indicating a possible role for rivers in partitioning gorilla genetic diversity. Comparative data are needed to evaluate the importance of both mechanisms of vicariance in other African rainforest taxa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2154448 | PMC |
http://dx.doi.org/10.1073/pnas.0704816105 | DOI Listing |
J Fish Biol
December 2024
Laboratório de Biologia e Cultivo de Peixes de Água Doce (LAPAD), Aquaculture Department, Agricultural Science Center, Federal University of Santa Catarina, Florianópolis, Brazil.
Fish presence in tailraces is a remarkable management concern in operating hydroelectric power plants (HPP) in Brazilian rivers. Fish get blocked during upstream migration for spawning, and large shoals can last for days in the tailrace; however, the circumstances that attract fish throughout the year to this region are uncertain, especially during drought conditions. To unravel this uncertainty, we modeled the relationship between Pimelodus maculatus abundance and environmental and operational variables (N = 26) in monthly fishing campaigns at the Machadinho HPP (N = 18).
View Article and Find Full Text PDFOdontoxiphidium apalachicolae, sp. nov., is described from seasonally flooded savannah habitats of the Central Panhandle of Florida.
View Article and Find Full Text PDFBiological invasions have caused the loss of freshwater biodiversity worldwide. The interplay between adaptive responses and demographic characteristics of populations impacted by invasions is expected to be important for their resilience, but the interaction between these factors is poorly understood. The freshwater gastropod is native to the Upper St.
View Article and Find Full Text PDFJ Phycol
December 2024
Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, USA.
The freshwater red alga Batrachospermum gelatinosum has a well-documented distribution spanning historically glaciated and unglaciated eastern North America. This alga has no known desiccation-resistant propagule; thus, long-distance dispersal events are likely rare. We predicted strong genetic structure among drainage basins and admixture among sites within basins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!