Link between DOC in near surface peat and stream water in an upland catchment.

Sci Total Environ

Earth and Biosphere Institute, School of Geography, University of Leeds, Woodhouse Lane, Leeds, UK.

Published: October 2008

Hydrologic transport of dissolved organic carbon (DOC) from peat soils may differ to organo-mineral soils in how they responded to changes in flow, because of differences in soil profile and hydrology. In well-drained organo-mineral soils, low flow is through the lower mineral layer where DOC is absorbed and high flow is through the upper organic layer where DOC is produced. DOC concentrations in streams draining organo-mineral soils typically increase with flow. In saturated peat soils, both high and low flows are through an organic layer where DOC is produced. Therefore, DOC in stream water draining peat may not increase in response to changes in flow as there is no switch in flow path between a mineral and organic layer. To verify this, we conducted a high-resolution monitoring study of soil and stream water at an upland peat catchment in northern England. Our data showed a strong positive correlation between DOC concentrations at -1 and -5 cm depth and stream water, and weaker correlations between concentrations at -20 to -50 cm depth and stream water. Although near surface organic material appears to be the key source of stream water DOC in both peat and organo-mineral soils, we observed a negative correlation between stream flow and DOC concentrations instead of a positive correlation as DOC released from organic layers during low and high flow was diluted by rainfall. The differences in DOC transport processes between peat and organo-mineral soils have different implications for our understanding of long-term changes in DOC exports. While increased rainfall may cause an increase in DOC flux from peat due to an increase in water volume, it may cause a decrease in concentrations. This response is contrary to expected changes in DOC exports from organo-mineral soils, where increase rainfall is likely to result in an increase in flux and concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2007.11.002DOI Listing

Publication Analysis

Top Keywords

stream water
24
organo-mineral soils
24
doc
14
layer doc
12
organic layer
12
doc concentrations
12
peat
8
water upland
8
doc peat
8
soils
8

Similar Publications

The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.

View Article and Find Full Text PDF

The swift industrial expansion has posed significant environmental challenges, particularly in the context of water pollution. Industrial effluents consist of substantial amounts of harmful pollutants that enter the main rivers via various tapped and untapped drains/local water streams, causing alterations in their physical and chemical properties. This study investigated 153 grossly polluting industries (GPIs) that were identified to release their effluents into the main rivers through different drains within multiple sectors in the industrial zone of four northern states of India in 2023.

View Article and Find Full Text PDF

Unlabelled: As wildfire regimes shift, resource managers are concerned about potential threats to aquatic ecosystems and the species they support, especially fishes. However, predicting fish responses can be challenging because wildfires affect aquatic ecosystems via multiple pathways. Application of whole-ecosystem approaches, such as food web modeling, can act as heuristic tools that offer valuable insights that account for these different mechanisms.

View Article and Find Full Text PDF

More inputs of antibiotics into groundwater but less into rivers as a result of manure management in China.

Environ Sci Ecotechnol

January 2025

Earth Systems and Global Change Group, Environmental Sciences Department, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, the Netherlands.

Antibiotics are extensively used in livestock production to prevent and treat diseases, but their environmental impact through contamination of rivers and groundwater is a growing concern. The specific antibiotics involved, their sources, and their geographic distribution remain inadequately documented, hindering effective mitigation strategies for river and groundwater pollution control caused by livestock production. Here we develope the spatially explicit MARINA-Antibiotics (China-1.

View Article and Find Full Text PDF

Presence of Heavy Metals in Vegetables Irrigated with Wastewater-Impacted Rivers and Its Health Risks in Ethiopia: Systematic Review.

Environ Health Insights

January 2025

Department of Environmental Health Science and Technology, Faculty of Public Health, Health Institute, Jimma University, Jimma, Ethiopia.

Background: Vegetables play critical role in human nutrition and overall health. However, consumption of vegetables cultivated through wastewater-impacted river can be source of potentially toxic heavy metals, which can cause detrimental health effects when their concentration exceeds the recommended maximum levels. Despite growing body of evidence highlighting the dangers associated with heavy metal accumulation in vegetables, there remains critical gap in systematic assessments within Ethiopian context.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!