AI Article Synopsis

  • The study aims to improve the theoretical understanding of peak capacity in comprehensive two-dimensional (2D) separations by accounting for issues arising from undersampling of first-dimension peaks.
  • Simulations involving various sample constituents were conducted to derive an effective first-dimension peak width based on the number of peaks observed in the 2D separations.
  • The findings reveal a new relationship that demonstrates how the peak width is influenced by sampling time, predicting greater broadening of peaks than previous models, which can aid in correcting peak capacity estimates and optimizing 2D separation processes.

Article Abstract

The objective of this work is to establish a means of correcting the theoretical maximum peak capacity of comprehensive two-dimensional (2D) separations to account for the deleterious effect of undersampling first-dimension peaks. Simulations of comprehensive 2D separations of hundreds of randomly distributed sample constituents were carried out, and 2D statistical overlap theory was used to calculate an effective first-dimension peak width based on the number of observed peaks in the simulated separations. The distinguishing feature of this work is the determination of the effective first-dimension peak width using the number of observed peaks in the entire 2D separation as the defining metric of performance. We find that the ratio of the average effective first-dimension peak width after sampling to its width prior to sampling (defined as ) is a simple function of the ratio of the first-dimension sampling time (t(s)) to the first-dimension peak standard deviation prior to sampling (1sigma): = square root1+0.21(t /(s)(1) sigma(2) This is valid for 2D separations of constituents having either randomly distributed or weakly correlated retention times, over the range of 0.2 on t(s)/1 sigma from this expression is in qualitative agreement with previous work based on the effect of undersampling on the effective width of a single first-dimension peak, but predicts up to 35% more broadening of first-dimension peaks than is predicted by previous models. This simple expression and accurate estimation of the effect of undersampling first-dimension peaks should be very useful in making realistic corrections to theoretical 2D peak capacities, and in guiding the optimization of 2D separations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac071504jDOI Listing

Publication Analysis

Top Keywords

first-dimension peak
16
effective first-dimension
12
peak width
12
peak capacity
8
capacity comprehensive
8
comprehensive two-dimensional
8
two-dimensional separations
8
randomly distributed
8
number observed
8
observed peaks
8

Similar Publications

Compound-specific stable isotope analysis (CSIA) using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) is a powerful tool for determining the isotopic composition of carbon in analytes from complex mixtures. However, LC-IRMS methods are constrained to fully aqueous eluents. Previous efforts to overcome this limitation were unsuccessful, as the use of organic eluents in LC-IRMS was deemed impossible.

View Article and Find Full Text PDF

Four-Dimensional Lipidomic Analysis Using Comprehensive Online UHPLC × UHPSFC/Tandem Mass Spectrometry.

Anal Chem

December 2024

Department of Analytical Chemistry, University of Pardubice, Faculty of Chemical Technology, Studentská 573, Pardubice 53210, Czech Republic.

Multidimensional chromatography offers enhanced chromatographic resolution and peak capacity, which are crucial for analyzing complex samples. This study presents a novel comprehensive online multidimensional chromatography method for the lipidomic analysis of biological samples, combining lipid class and lipid species separation approaches. The method combines optimized reversed-phase ultrahigh-performance liquid chromatography (RP-UHPLC) in the first dimension, utilizing a 150 mm long C18 column, with ultrahigh-performance supercritical fluid chromatography (UHPSFC) in the second dimension, using a 10 mm long silica column, both with sub-2 μm particles.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores the effectiveness of a two-dimensional gas chromatography-flame ionization detection (GC×GC-FID) method for identifying 12 psychoactive drugs in urine, including popular substances like cocaine and methamphetamine.
  • The method achieved clear separation of these drugs within 8 minutes using a specific column setup, demonstrating better results than traditional configurations.
  • Validation showed high accuracy and precision for drug detection, with very low detection limits and effective recovery rates, proving its usefulness for quick forensic drug testing.
View Article and Find Full Text PDF

Overlapping peaks can be difficult to avoid in 1D-LC, which make the identification and quantification of compounds ambiguous, especially if the only available detector is a UV/DAD. To overcome this, a two-dimensional liquid chromatography (2D-LC) method to monitor Bisphenols (BPs), and particularly the chosen analogues BPA, BPB, BPF, BPS, BPZ, and BPAF, in a complex matrix (canned food) was developed and validated. BPs are endocrine disruptors present in the lining of the can, which may leach into the content of canned food.

View Article and Find Full Text PDF

Modulation optimization when using a splitter pump after the first dimension in comprehensive two- dimensional liquid chromatography.

J Chromatogr A

October 2024

Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 and 115 (B1900AJL), La Plata, Buenos Aires, Argentina; División Química Analítica, Facultad de Ciencias Exactas, UNLP, 47 and 115 (B1900AJL), La Plata, Buenos Aires, Argentina. Electronic address:

The rapid growth in the use of two dimensional liquid chromatography (2D-LC) applied to the analysis of moderately to highly complex mixtures, has been fueled by continuous improvements in performance and robustness of the instrument components, as well as the ease-of-use of software necessary for controlling the 2D-LC instrument hardware, and analysis of the large data files that result from this type of work. This work has focused on the evaluation of the performance of an online full comprehensive mode (LC×LC), when an active modulation is implemented using a flow splitter pump placed after the D effluent. Two different types of splitting pumps were evaluated: a binary ultra-high pressure liquid chromatography (UHPLC) pump and a high precision syringe pump.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!