Background: Systemic in vivo gene therapy has resulted in widespread correction in animal models when treated at birth. However, limited improvement was observed in postnatally treated animals with mainly targeting to the liver and bone marrow. It has been shown that an O(6)-methylguanine-DNA-methyltransferase variant (MGMT(P140K)) mediated in vivo selection of transduced hematopoietic stem cells (HSC) in animals.
Methods: We investigated the feasibility of MGMT(P140K)-mediated selection in primary hepatocytes from a mouse model of mucopolysaccharidosis type I (MPS I) in vitro using lentiviral vectors.
Results: We found that multiple cycles of O(6)-benzylguanine (BG)/1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) treatment at a dosage effective for ex vivo HSC selection led to a two-fold increase of MGMT-expressing primary hepatocytes under culture conditions with minimum cell expansion. This enrichment level was comparable to that obtained after selection at a hepatic maximal tolerated dose of BCNU. Similar levels of increase were observed regardless of initial transduction frequency, or the position of MGMT (upstream or downstream of internal ribosome entry site) in the vector constructs. In addition, we found that elongation factor 1alpha promoter was superior to the long-terminal repeat promoter from spleen focus-forming virus with regard to transgene expression in primary hepatocytes. Moreover, the levels of therapeutic transgene expression in transduced, enzyme-deficient hepatocytes directly correlated with the doses of BCNU, leading to metabolic correction in transduced hepatocytes and metabolic cross-correction in neighbouring non-transduced MPS I cells.
Conclusions: These results demonstrate that MGMT(P140K) expression confers successful protection/selection in primary hepatocytes, and provide 'proof of concept' to the prospect of MGMT(P140K)-mediated co-selection for hepatocytes and HSC using BG/BCNU treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987669 | PMC |
http://dx.doi.org/10.1002/jgm.1141 | DOI Listing |
Int J Biol Macromol
January 2025
Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Infection Control, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China. Electronic address:
The study collected liver tissue samples from PBC patients and healthy controls and performed transcriptomic analysis of the cells in the samples using single-cell RNA sequencing. The expression characteristics of SHISA5 in PBC were revealed by comparing the difference of SHISA5 protein in the two groups of samples. The structure of SHISA5 protein was predicted and its possible biological function was analysed by bioinformatics method.
View Article and Find Full Text PDFJ Thromb Haemost
January 2025
BioMarin Pharmaceutical Inc., Novato, CA, USA.
Background: Valoctocogene roxaparvovec, an adeno-associated virus vector that transfers a human factor VIII (FVIII) coding sequence to hepatocytes, provides bleeding protection for people with severe hemophilia A (HA).
Objective: Determine the efficacy and safety of valoctocogene roxaparvovec with concomitant prophylactic glucocorticoids in the open-label, single-arm, phase 3b GENEr8-3 trial.
Methods: Participants with severe HA who were using HA prophylaxis received one 6x10 vg/kg infusion of valoctocogene roxaparvovec concomitantly with daily prophylactic glucocorticoids (40 mg prednisolone equivalent/d weeks 0‒8; taper to 5 mg/d weeks 9‒19).
Biochem Biophys Res Commun
January 2025
Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan; Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, 920-8640, Kanazawa, Ishikawa, Japan. Electronic address:
Hepatic de novo lipogenesis (DNL) is increased by both carbohydrate intake and protein consumption. In hepatic fat synthesis, a key role is played by the induction of the hepatic expression of lipogenic genes, including Fasn, Scd1, and Srebf1. Regarding carbohydrate intake, increased blood glucose and insulin levels promote the expression of hepatic lipogenic genes.
View Article and Find Full Text PDFJ Hepatol
January 2025
MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA.
Background & Aims: A common genetic variant (rs738409) encoding isoleucine to methionine at position 148 in the PNPLA3 protein is a determinant of hepatic steatosis, inflammation, fibrosis, cirrhosis, and liver-related mortality. AZD2693 is a liver-targeted antisense oligonucleotide against PNPLA3 mRNA. We evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics in single ascending dose (SAD) and multiple ascending dose (MAD) studies.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
January 2025
Department of endocrinology, the Second People's Hospital of Kunming, Kunming 650203, Yunnan, PR China. Electronic address:
The disorders of glucose and lipid metabolism contribute to severe diseases, including cardiovascular disease, diabetes, and fatty liver. Here, we identified DNA damage-binding protein 2 (DDB2), an E3 ubiquitin ligase, as a pivotal regulator of lipid metabolism disorders in type II diabetes mellitus (T2DM). A mouse model of T2DM and primary mouse hepatocytes with steatosis were induced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!